Date

Measurement of the pseudoscalar decay constant, f(D).

The BES collaboration Bai, J.Z. ; Bardon, O. ; Blum, Ira K. ; et al.
SLAC-PUB-7147, 1996.
Inspire Record 421008 DOI 10.17182/hepdata.18760

None

2 data tables

No description provided.

No description provided.


Measurement of the Hadronic Decay Current in tau- --> pi- pi- pi+ tau-neutrino

The OPAL collaboration Akers, R. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 67 (1995) 45-56, 1995.
Inspire Record 393414 DOI 10.17182/hepdata.52012

The decay τ−→π−−+vτ has been studied using data collected with the OPAL detector at LEP during 1992 and 1993. The hadronic structure functions for this decay are measured model independently assuming G-parity invariance and neglecting scalar currents. Simultaneously the parity violating asymmetry parameter is determined to be\(\gamma VA = 1.08 _{ - 0.41- 0.25}^{ + 0.46+ 0.14} \), consistent with the Standard Model prediction of γVA=1 for left-handed tau neutrinos. Models of Kühn and Santamaria and of Isgur et al. are used to fit distributions of the invariant 3π mass as well as 2π mass projections of the Dalitz plot. The model dependent mass and width of thea1 resonance are measured to be\(m_{a_1 }= 1.266 \pm 0.014_{ - 0.002}^{ + 0.012} \) GeV and\(\Gamma _{a_1 }= 0.610 \pm 0.049_{ - 0.019}^{ + 0.053} \) GeV for the Kühn and Santamaria model and\(m_{a_1 }= 1.202 \pm 0.009_{ - 0.001}^{ + 0.009} \) GeV and\(\Gamma _{a_1 }= 0.422 \pm 0.023_{ - 0.004}^{ + 0.033} \) GeV for the Isgur et al. model. The model dependent values obtained for the parity violating asymmetry parameter are γVA=0.87±0.27−0.06+0.05 for the Kühn and Santamaria model and γVA=1.10±0.31−0.14+0.13 for the Isgur et al. model. Within the Isgur et al. model the ratio of theS-andD-wave amplitudes is measured to beD/S=−0.09±0.03±0.01.

2 data tables

See paper for definition of four weak decay formfactors : wa, wc, wd, we. For TAU+-.

Here ASYM is parity violating asymmetry parameter gamma_VA = 2g_v*g_A/(g_v **2+g_A**2) (see paper).


Measurement of the Form Factors for the Decay $D_s^+ \to \phi \mu^+ \nu$

The E687 collaboration Frabetti, P.L. ; Cheung, H.W.K. ; Cumalat, John P. ; et al.
Phys.Lett.B 328 (1994) 187-192, 1994.
Inspire Record 372405 DOI 10.17182/hepdata.42502

The fermilab high-energy photoproduction experiment E687 provides a sample of approximately 90 events of the decay mode D + s → φμ + ν . The ratios of the form factors governing the decay are measured to be R v =1.8±0.9±0.2 and R 2 = 1.1±0.8±0.1, implying a polarization of Г 1 /Г t = 1.0±0.5±0.1 for the electron decay, consistent with our measurement of the form factor for the decay D + → K ∗0 μ + ν .

1 data table

With a vetor meson in the final state, there are four formfactors, V(Q2), A1(Q2), A2(Q2), A3(Q2). Charge conjugated states are understood.


Measurement of the magnetic form factor of the neutron

Markowitz, P. ; Finn, J.M. ; Anderson, B.D. ; et al.
Phys.Rev.C 48 (1993) R5-R9, 1993.
Inspire Record 363009 DOI 10.17182/hepdata.26000

The H2(e,e’n)1H quasielastic cross section was measured at Q2 values of 0.109, 0.176, and 0.255 (GeV/c)2. The neutron detection efficiency was determined by the associated particle technique with the H2(γ,pn) reaction for each of the three neutron kinetic energies. These H2(e,e’n) measurements of the coincidence cross sections are the first at low Q2. The cross sections are sensitive primarily to the neutron magnetic form factor GMn at these kinematics. The extracted GMn values have smaller uncertainties than previous data and are consistent with the dipole parametrization at the two higher momentum transfers; at the lowest momentum transfer, the value of GMn is ∼10% higher than the dipole value.

1 data table

No description provided.


A Measurement of the pi0, eta and eta-prime electromagnetic form-factors

The CELLO collaboration Behrend, H.J. ; Criegee, L. ; Field, J.H. ; et al.
Z.Phys.C 49 (1991) 401-410, 1991.
Inspire Record 299282 DOI 10.17182/hepdata.45172

We present measurement of the π0γ*γ, ηγ*γ and η′γ*γ form factors. The π0-form factor is for the first time observed in the space-like region. The transition form factor of the η-meson is determined from its decay modes π+π−π0, π+π−γ and the neutral decay mode γγ. The decay of the η′ is observed in the decay channels ργ, ηπ+π− with η→γγ and in the four charged prong final state stemming from ηπ+π− with the η decaying into π+π−(π0/γ). All form factors agree well with a simple ρ-pole predicted by the vector meson dominance model and also with the QCD inspired Brodsky-Lepage model.

4 data tables

No description provided.

No description provided.

No description provided.

More…

A STUDY OF e+ e- ANNIHILATION IN THE 1400-MeV TO 2250-MeV ENERGY RANGE WITH THE MAGNETIC DETECTOR DM2 AT DCI

Augustin, J.E. ; Ayach, L. ; Calcaterra, A. ; et al.
LAL-83-21, 1983.
Inspire Record 192321 DOI 10.17182/hepdata.13242

None

5 data tables

ASSUMING ABS(GE)=ABS(GM).

No description provided.

No description provided.

More…

Electromagnetic Form-Factors of the Proton at Low Four-Momentum Transfer

Borkowski, F. ; Peuser, P. ; Simon, G.G. ; et al.
Nucl.Phys.B 93 (1975) 461-478, 1975.
Inspire Record 850 DOI 10.17182/hepdata.31992

The 300 MeV electron linear accelerator of Mainz has been used to measure the angular dependence of the electron-proton elastic scattering cross sections at seven different energies for squared four-momentum transfers between 0.13 and 4.7 fm −2 . The proton form factors have been extracted from the cross sections by means of Rosenbluth plots and by fitting parametrized analytical functions directly to the cross sections. The best fit is compared to the data of other laboratories. The previously reported deviations from the dipole fit have been confirmed. From the form factors at q 2 <0.9 fm 2 the proton r.m.s. radius has been determined. A determination of the spectral function of the nucleon isovector form factor G E V in the time-like is obtained using a realistic ϱ resonance.

9 data tables

No description provided.

No description provided.

No description provided.

More…

A STUDY OF THE STRONG INTERACTION FORM-FACTORS FOR K0(L) ---> pi mu neutrino AND K0(L) ---> pi electron neutrino

Dally, E. ; Innocenti, P. ; Seppi, E. ; et al.
Phys.Lett.B 41 (1972) 647-651, 1972.
Inspire Record 74541 DOI 10.17182/hepdata.28214

We have extracted the strong interaction form factors from K o e3 and K o μ3 data of our previously reported K o L experiment in a manner which does not assume an explicit q 2 = ( p K − p π ) 2 dependence. We present the unparameterized form factors ƒ + (q 2 ) from the K o L → πeν and K o L → πμν modes and ƒ o (q 2 ) and ξ ( q 2 ) from the K o L → πμν data. A comparison of these unparameterized results is made with the results of the Dalitz plot analyses.

1 data table

The conventional form factor f+ is studied.