Differential cross sections for π + p elastic scattering were measured for seven incident energies from 65 to 140 MeV at laboratory scattering angles between 93° and 165°. The results are compared with previous results of Bertin et al. and the phase-shift analysis of Arndt and Roper. Agreement between the phase-shift analysis and the data is good.
ABSOLUTE NORMALIZATION UNCERTAINTY = 2.4 PCT.
ABSOLUTE NORMALIZATION UNCERTAINTY = 2.0 PCT.
ABSOLUTE NORMALIZATION UNCERTAINTY = 1.4 PCT.
We present measurements from a counter-optical spark chamber experiment of the differential cross sections for p̄p → π 0 π 0 , π 0 η 0 at 25 momenta in the range 1.1 − 2.0 GeV/ c (c.m. energy 2.12 to 2.43 GeV). Approximately 750 000 pictures were taken in the experiment.
THE ANGULAR DISTRIBUTIONS IN THE PUBLISHED FIGURES ARE NOT TABULATED HERE SINCE THEY ARE ONLY RECONSTRUCTED FROM THE LEGENDRE EXPANSION COEFFICIENTS WHICH WERE MEASURED DIRECTLY FROM THE DATA.
No description provided.
LEGENDRE COEFFICIENTS NORMALIZED SO THAT LEG(L=0) = SIG/(2*PI) (IDENTICAL PARTICLES IN FINAL STATE). THESE ARE PLOTTED IN FIG. 1 OF THE FOLLOWING PAPER.
Differential cross sections for elastic K + p scattering have been measured at nineteen momenta between 0.7 and 1.9 GeV/ c . The data represent between 10 thousand and 20 thousand elastic events at each momentum and cover a wide range of scattering angles ( −0.98 ≲ cos θ ∗ ≲ 0.95 ). A computer controlled system of scintillation counters and acoustic spark chambers was used to detect the elastic events. Various internal consistency checks indicate that the absolute normalization of the data is accurate to within 2–3%. The cross sections show a smooth transition from an isotropic angular distribution to a dominant forward peak over the range covered by the experiment. Phase-shift analyses including these results show little evidence for a direct-channel resonance, and fitting the results by t - and u -channel exchange processes alone gives a good fit.
No description provided.
No description provided.
No description provided.
Differential cross sections have been measured for π − p elastic scattering at laboratory momenta in the range 1.2 to 3.0 GeV/ c for the c.m. range 0.97 > cos θ ∗ > −0.98 . The corresponding mass range is 1.78 to 2.56 GeV/ c 2 . The data was obtained from a counter experiment in which the scattered pions and protons were detected in coincidence by arrays of scintillation counters.
No description provided.
No description provided.
No description provided.
Hydrogen and deuterium gases have been bombarded in a gas target at a temperature of 77°K and at a pressure of about 140 atmospheres by the 318±10 Mev "spread-out" bremsstrahlung photon beam of the Berkeley electron synchrotron. The charged π-mesons which were produced were collimated at angles of 45°, 90°, and 135° to the beam direction. The π+ mesons were detected with trans-stilbene scintillation crystals using πμ, πβ, and πμβ delayed coincidences and π+ and π− mesons were detected with Ilford C-2 200-micron nuclear emulsions. The ratios of the numbers of π− to π+ mesons produced in deuterium were 0.96±0.10, 1.09±0.12, and 1.21±0.17 for the angles of 45°, 90°, and 135°, respectively. No variation of the ratio with meson energy, outside statistics, was observed. Absolute values for the π+ meson energy distribution functions from hydrogen and deuterium per "equivalent quantum" have been measured at each of the above production angles. The differential and total cross sections have been obtained by integrating over energy and angle, respectively. The experimental ratios of the deuterium to hydrogen cross sections are in good agreement with the phenomenological theory of Chew and Lewis when the Hulthén deuteron function with β=6α is used in the initial state, plane waves are used for the nucleons in the final state, and the bremsstrahlung cutoff is taken into account. The statistics of the data are, however, not sufficient to determine the amount of spin interaction. The excitation functions for hydrogen and deuterium and points on the angular distribution curves in the center-of-mass system have been obtained. An upper limit of 0.08 of the charged π-meson cross section was obtained for μ-meson production from deuterium.
No description provided.