A search is performed for a massive new vector-like quark T, with charge 2/3, that is pair produced together with its antiparticle in proton-proton collisions. The data were collected by the CMS experiment at the Large Hadron Collider in 2012 at sqrt(s) = 8 TeV and correspond to an integrated luminosity of 19.5 inverse femtobarns. The T quark is assumed to decay into three different final states, bW, tZ, and tH. The search is carried out using events with at least one isolated lepton. No deviations from standard model expectations are observed, and lower limits are set on the T quark mass at 95% confidence level. The lower limit lies between 687 and 782 GeV for all possible values of the branching fractions into the three different final states assuming strong production. These limits are the most stringent constraints to date on the existence of such a quark.
Number of events predicted for background processes and observed in the single-lepton sample. The uncertainty in the total background expectation is computed including the correlations between the systematic uncertainties of the individual contributions.
Number of events predicted for background processes and observed in the opposite-sign dilepton samples with two or three jets (OS1) and with at least 5 jets (OS2), the same-sign dilepton sample (SS), and the trilepton sample. An entry "-" means that the background source is not applicable to the channel.
Lower limits for the T quark mass, at 95% CL, for different combinations of T quark branching fractions.
A search for supersymmetry in the context of general gauge-mediated (GGM) breaking with the lightest neutralino as the next-to-lightest supersymmetric particle and the gravitino as the lightest is presented. The data sample corresponds to an integrated luminosity of 36 inverse picobarns recorded by the CMS experiment at the LHC. The search is performed using events containing two or more isolated photons, at least one hadronic jet, and significant missing transverse energy. No excess of events at high missing transverse energy is observed. Upper limits on the signal cross section for GGM supersymmetry between 0.3 and 1.1 pb at the 95% confidence level are determined for a range of squark, gluino, and neutralino masses, excluding supersymmetry parameter space that was inaccessible to previous experiments.
95 PCT CL upper limits to cross section and the GGM acceptance as a function of Gluino mass for Squark mass 400 GeV and Neutralino mass 50 GeV.
95 PCT CL upper limits to cross section and the GGM acceptance as a function of Gluino mass for Squark mass 480 GeV and Neutralino mass 50 GeV.
95 PCT CL upper limits to cross section and the GGM acceptance as a function of Gluino mass for Squark mass 560 GeV and Neutralino mass 50 GeV.
The A-dependence is observed in $x_F$-distributions for the $\Lambda K^0$ system produced with the small transverse momentum in the neutron-nucleus interactions. For the $\Lambda$ hyperons similar dependence isn't seen. The result is interpreted as an effect from intermediate excitative nucleon state, which decays into strange particles. Such interpretation is confirmed experimental data on $\Lambda K$ pair production in the pion-nucleon interactions.
No description provided.
Total number of events is 387.
CT = Total number of events is 841.
A search for a heavy charged gauge boson, W ′, using the decay channels W ′ → eν and W′ → τν → eνν ν is reported. The data used in the analysis were collected by the DØ experiment at the Fermilab Tevatron during the 1992-93 p p collider run from an integrated luminosity of 13.9 ± 0.8 pb −1 at s =1.8 TeV . Assuming that the neutrino from W ′ decay is stable and has a mass significantly less than m W ′ , an upper limit at the 95% confidence level is set on the cross section times branching ratio for p p → W′ → eν . A W ′ with the same couplings to quarks and leptons as the standard model W boson is excluded for m W ′ < 610 GeV/c 2 .
No description provided.
The W'+- is assumed has the couplings to quarks and leptons as the standard model W and neutrinos produced in WPRIME decay are stable and have a mass significantly less then M(W').
None
NUCLEUS IS P, C, AL, CU.
NUCLEUS IS P, C, AL, CU.
NUCLEUS IS P, C, AL, CU.
We have determined mW=79.91±0.39 GeV/c2 from an analysis of W→eν and W→μν data from the Collider Detector at Fermilab in p¯p collisions at a c.m. energy of √s =1.8 TeV. This result, together with the world-average Z mass, determines the weak mixing angle to be sin2θW=0.232±0.008. Bounds on the top-quark mass are discussed.
Combining W mass result with world-average Z mass (91.191 GEV).