A measurement of the production of three isolated photons in proton-proton collisions at a centre-of-mass energy $\sqrt{s}$ = 8 TeV is reported. The results are based on an integrated luminosity of 20.2 fb$^{-1}$ collected with the ATLAS detector at the LHC. The differential cross sections are measured as functions of the transverse energy of each photon, the difference in azimuthal angle and in pseudorapidity between pairs of photons, the invariant mass of pairs of photons, and the invariant mass of the triphoton system. A measurement of the inclusive fiducial cross section is also reported. Next-to-leading-order perturbative QCD predictions are compared to the cross-section measurements. The predictions underestimate the measurement of the inclusive fiducial cross section and the differential measurements at low photon transverse energies and invariant masses. They provide adequate descriptions of the measurements at high values of the photon transverse energies, invariant mass of pairs of photons, and invariant mass of the triphoton system.
The three isolated photons cross section with systematic and statistical uncertainties as a function of ET(Photon1).
The three isolated photons cross section with systematic and statistical uncertainties as a function of ET(Photon2).
The three isolated photons cross section with systematic and statistical uncertainties as a function of ET(Photon3).
A search for flavour-changing neutral current (FCNC) events via the coupling of a top quark, a photon, and an up or charm quark is presented using 81 fb$^{-1}$ of proton-proton collision data taken at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC. Events with a photon, an electron or muon, a $b$-tagged jet, and missing transverse momentum are selected. A neural network based on kinematic variables differentiates between events from signal and background processes. The data are consistent with the background-only hypothesis, and limits are set on the strength of the $tq\gamma$ coupling in an effective field theory. These are also interpreted as 95% CL upper limits on the cross section for FCNC $t\gamma$ production via a left-handed (right-handed) $tu\gamma$ coupling of 36 fb (78 fb) and on the branching ratio for $t\rightarrow \gamma u$ of $2.8\times 10^{-5}$ ($6.1\times 10^{-5}$). In addition, they are interpreted as 95% CL upper limits on the cross section for FCNC $t\gamma$ production via a left-handed (right-handed) $tc\gamma$ coupling of 40 fb (33 fb) and on the branching ratio for $t\rightarrow \gamma c$ of $22\times 10^{-5}$ ($18\times 10^{-5}$).
Post-fit distributions of a background-only fit to the signal region (SR) and the control regions (CRs) of the NN output in the SR. In addition, the expected signal is overlaid for an effective coupling strength corresponding to the observed limit multiplied by a factor of ten.
Observed (expected) 95 % CL limits on the effective coupling strengths for different vertices and couplings, the production cross section, and the branching ratio. For the former, the energy scale is assumed to be $\Lambda$ = 1 TeV.
Post-fit distributions of a background-only fit to the SR and the CRs of the NN output in the SR for the $tu\gamma$ right-handed coupling. In addition, the expected signal is overlaid for an effective coupling strength corresponding to the observed limit multiplied by a factor of ten.
A search for excited electrons produced in $pp$ collisions at $\sqrt{s} = 13$ TeV via a contact interaction $q\bar{q} \to ee^*$ is presented. The search uses 36.1 fb$^{-1}$ of data collected in 2015 and 2016 by the ATLAS experiment at the Large Hadron Collider. Decays of the excited electron via a contact interaction into an electron and a pair of quarks ($eq\bar{q}$) are targeted in final states with two electrons and two hadronic jets, and decays via a gauge interaction into a neutrino and a $W$ boson ($\nu W$) are probed in final states with an electron, missing transverse momentum, and a large-radius jet consistent with a hadronically decaying $W$ boson. No significant excess is observed over the expected backgrounds. Upper limits are calculated for the $pp \to ee^* \to eeq\bar{q}$ and $pp \to ee^* \to e\nu W$ production cross sections as a function of the excited electron mass $m_{e^*}$ at 95% confidence level. The limits are translated into lower bounds on the compositeness scale parameter $\Lambda$ of the model as a function of $m_{e^*}$. For $m_{e^*} < 0.5$ TeV, the lower bound for $\Lambda$ is 11 TeV. In the special case of $m_{e^*} = \Lambda$, the values of $m_{e^*} < 4.8$ TeV are excluded. The presented limits on $\Lambda$ are more stringent than those obtained in previous searches.
A search for the production of three massive vector bosons in proton--proton collisions is performed using data at $\sqrt{s}=13\,TeV$ recorded with the ATLAS detector at the Large Hadron Collider in the years 2015--2017, corresponding to an integrated luminosity of $79.8\,\text{fb}^{-1}$. Events with two same-sign leptons $\ell$ (electrons or muons) and at least two reconstructed jets are selected to search for $WWW\to\ell\nu\ell\nu qq$. Events with three leptons without any same-flavour opposite-sign lepton pairs are used to search for $WWW\to\ell\nu\ell\nu\ell\nu$, while events with three leptons and at least one same-flavour opposite-sign lepton pair and one or more reconstructed jets are used to search for $WWZ\to\ell\nu qq \ell\ell$. Finally, events with four leptons are analysed to search for $WWZ\to\ell\nu\ell\nu\ell\ell$ and $WZZ\to qq \ell\ell\ell\ell$. Evidence for the joint production of three massive vector bosons is observed with a significance of 4.0 standard deviations, where the expectation is 3.1 standard deviations.
This paper presents a search for exotic decays of the Higgs boson into a pair of new pseudoscalar particles, $H\rightarrow aa$, where one pseudoscalar decays into a $b$-quark pair and the other decays into a $\tau$-lepton pair, in the mass range $12\leq m_{a}\leq 60$ GeV. The analysis uses $pp$ collision data at $\sqrt{s} = 13$ TeV collected with the ATLAS detector at the LHC, corresponding to an integrated luminosity of 140 ${fb}^{-1}$. No significant excess above the Standard Model (SM) prediction is observed. Assuming the SM Higgs boson production cross-section, the search sets upper limits at 95% confidence level on the branching ratio of Higgs bosons decaying into $b\bar{b}\tau^+\tau^-$, $\mathcal{B}(H \rightarrow aa \rightarrow b\bar{b}\tau^+\tau^-)$, between 2.2% and 3.9% depending on the pseudoscalar mass.
Visible mass $m^{\mathrm{vis}}(\mu\tau_{\mathrm{had}})$ and distribution for signal and the expected background. In order to compare the shapes, the expected signal distribution is shown assuming ten times the production cross section of the Higgs boson and a 100% branching ratio to $b\bar{b}\tau^+\tau^-$. Overflow events are included in the last bins.
Sum of the transverse mass $\Sigma m_T$ distributions for signal and the expected background. Events with high $m^{\mathrm{vis}}(\mu\tau_{\mathrm{had}})$ and high $\Sigma m_T$ are included in the $t\bar{t}$ region. In order to compare the shapes, the expected signal distribution is shown assuming ten times the production cross section of the Higgs boson and a 100% branching ratio to $b\bar{b}\tau^+\tau^-$. Overflow events are included in the last bins.
The dynamics of isolated-photon plus one-, two- and three-jet production in $pp$ collisions at a centre-of-mass energy of 8 TeV are studied with the ATLAS detector at the LHC using a data set with an integrated luminosity of 20.2 fb$^{-1}$. Measurements of isolated-photon plus jets cross sections are presented as functions of the photon and jet transverse momenta. The cross sections as functions of the azimuthal angle between the photon and the jets, the azimuthal angle between the jets, the photon-jet invariant mass and the scattering angle in the photon-jet centre-of-mass system are presented. The pattern of QCD radiation around the photon and the leading jet is investigated by measuring jet production in an annular region centred on each object; enhancements are observed around the leading jet with respect to the photon in the directions towards the beams. The experimental measurements are compared to several different theoretical calculations, and overall a good description of the data is found.
Measured cross sections for isolated-photon plus 1jet production as a function of $E_{\rm T}^{\gamma}$.
Measured cross sections for isolated-photon plus 1jet production as a function of $p_{\rm T}^{\rm jet1}$.
Measured cross sections for isolated-photon plus 1jet production as a function of $m^{\gamma-\rm jet1}$.
This paper presents a search for direct electroweak gaugino or gluino pair production with a chargino nearly mass-degenerate with a stable neutralino. It is based on an integrated luminosity of 36.1 $\mathrm{fb}^{-1}$ of $pp$ collisions at $\sqrt{s} = 13$ TeV collected by the ATLAS experiment at the LHC. The final state of interest is a disappearing track accompanied by at least one jet with high transverse momentum from initial-state radiation or by four jets from the gluino decay chain. The use of short track segments reconstructed from the innermost tracking layers significantly improves the sensitivity to short chargino lifetimes. The results are found to be consistent with Standard Model predictions. Exclusion limits are set at 95% confidence level on the mass of charginos and gluinos for different chargino lifetimes. For a pure wino with a lifetime of about 0.2 ns, chargino masses up to 460 GeV are excluded. For the strong production channel, gluino masses up to 1.65 TeV are excluded assuming a chargino mass of 460 GeV and lifetime of 0.2 ns.
Expected exclusion limit at 95% CL obtained in the electroweak production channel in terms of the chargino lifetime ($\tau_{\tilde{\chi}_{1}^{\pm}}$) and mass ($m_{\tilde{\chi}_{1}^{\pm}}$).
Observed exclusion limit at 95% CL obtained in the electroweak production channel in terms of the chargino lifetime ($\tau_{\tilde{\chi}_{1}^{\pm}}$) and mass ($m_{\tilde{\chi}_{1}^{\pm}}$).
Expected exclusion limit at 95% CL obtained in the strong production channel in terms of the gluino and chargino masses. The limit is shown assuming a chargino lifetime 0.2 ns.
A search for electroweak production of supersymmetric particles in scenarios with compressed mass spectra in final states with two low-momentum leptons and missing transverse momentum is presented. This search uses proton-proton collision data recorded by the ATLAS detector at the Large Hadron Collider in 2015-2016, corresponding to 36.1 fb$^{-1}$ of integrated luminosity at $\sqrt{s}=13$ TeV. Events with same-flavor pairs of electrons or muons with opposite electric charge are selected. The data are found to be consistent with the Standard Model prediction. Results are interpreted using simplified models of R-parity-conserving supersymmetry in which there is a small mass difference between the masses of the produced supersymmetric particles and the lightest neutralino. Exclusion limits at 95% confidence level are set on next-to-lightest neutralino masses of up to 145 GeV for Higgsino production and 175 GeV for wino production, and slepton masses of up to 190 GeV for pair production of sleptons. In the compressed mass regime, the exclusion limits extend down to mass splittings of 2.5 GeV for Higgsino production, 2 GeV for wino production, and 1 GeV for slepton production. The results are also interpreted in the context of a radiatively-driven natural supersymmetry model with non-universal Higgs boson masses.
<b>Kinematics 1</b> Kinematic distributions after the background-only fit showing the data as well as the expected background in the inclusive electroweakino SRℓℓ-m<sub>ℓℓ</sub> [1, 60] (top) and slepton SRℓℓ-m<sub>T2</sub><sup>100</sup> [100, ∞] (bottom) signal regions. The arrow in the E<sub>T</sub><sup>miss</sup>/H<sub>T</sub><sup>lep</sup> variables indicates the minimum value of the requirement imposed in the final SR selection. The m<sub>ℓℓ</sub> and m<sub>T2</sub> distributions (right) have all the SR requirements applied. Background processes containing fewer than two prompt leptons are categorized as `Fake/nonprompt'. The category `Others' contains rare backgrounds from triboson, Higgs boson, and the remaining top-quark production processes listed in Table 1. The uncertainty bands plotted include all statistical and systematic uncertainties. The last bin includes overflow. The dashed lines represent benchmark signal samples corresponding to the Higgsino H̃ and slepton ℓ̃ simplified models. Orange arrows in the Data/SM panel indicate values that are beyond the y-axis range.
<b>Kinematics 2</b> Kinematic distributions after the background-only fit showing the data as well as the expected background in the inclusive electroweakino SRℓℓ-m<sub>ℓℓ</sub> [1, 60] (top) and slepton SRℓℓ-m<sub>T2</sub><sup>100</sup> [100, ∞] (bottom) signal regions. The arrow in the E<sub>T</sub><sup>miss</sup>/H<sub>T</sub><sup>lep</sup> variables indicates the minimum value of the requirement imposed in the final SR selection. The m<sub>ℓℓ</sub> and m<sub>T2</sub> distributions (right) have all the SR requirements applied. Background processes containing fewer than two prompt leptons are categorized as `Fake/nonprompt'. The category `Others' contains rare backgrounds from triboson, Higgs boson, and the remaining top-quark production processes listed in Table 1. The uncertainty bands plotted include all statistical and systematic uncertainties. The last bin includes overflow. The dashed lines represent benchmark signal samples corresponding to the Higgsino H̃ and slepton ℓ̃ simplified models. Orange arrows in the Data/SM panel indicate values that are beyond the y-axis range.
<b>Kinematics 3</b> Kinematic distributions after the background-only fit showing the data as well as the expected background in the inclusive electroweakino SRℓℓ-m<sub>ℓℓ</sub> [1, 60] (top) and slepton SRℓℓ-m<sub>T2</sub><sup>100</sup> [100, ∞] (bottom) signal regions. The arrow in the E<sub>T</sub><sup>miss</sup>/H<sub>T</sub><sup>lep</sup> variables indicates the minimum value of the requirement imposed in the final SR selection. The m<sub>ℓℓ</sub> and m<sub>T2</sub> distributions (right) have all the SR requirements applied. Background processes containing fewer than two prompt leptons are categorized as `Fake/nonprompt'. The category `Others' contains rare backgrounds from triboson, Higgs boson, and the remaining top-quark production processes listed in Table 1. The uncertainty bands plotted include all statistical and systematic uncertainties. The last bin includes overflow. The dashed lines represent benchmark signal samples corresponding to the Higgsino H̃ and slepton ℓ̃ simplified models. Orange arrows in the Data/SM panel indicate values that are beyond the y-axis range.
A search for a heavy charged-boson resonance decaying into a charged lepton (electron or muon) and a neutrino is reported. A data sample of 139 fb$^{-1}$ of proton-proton collisions at $\sqrt{s} = 13$ TeV collected with the ATLAS detector at the LHC during 2015-2018 is used in the search. The observed transverse mass distribution computed from the lepton and missing transverse momenta is consistent with the distribution expected from the Standard Model, and upper limits on the cross section for $pp \to W^\prime \to \ell\nu$ are extracted ($\ell = e$ or $\mu$). These vary between 1.3 pb and 0.05 fb depending on the resonance mass in the range between 0.15 and 7.0 TeV at 95% confidence level for the electron and muon channels combined. Gauge bosons with a mass below 6.0 TeV and 5.1 TeV are excluded in the electron and muon channels, respectively, in a model with a resonance that has couplings to fermions identical to those of the Standard Model $W$ boson. Cross-section limits are also provided for resonances with several fixed $\Gamma / m$ values in the range between 1% and 15%. Model-independent limits are derived in single-bin signal regions defined by a varying minimum transverse mass threshold. The resulting visible cross-section upper limits range between 4.6 (15) pb and 22 (22) ab as the threshold increases from 130 (110) GeV to 5.1 (5.1) TeV in the electron (muon) channel.
Upper limits at the 95% CL on the cross section for SSM $W^\prime$ production and decay to the electron+neutrino channel as a function of the $W^\prime$ pole mass.
Upper limits at the 95% CL on the cross section for SSM $W^\prime$ production and decay to the muon+neutrino channel as a function of the $W^\prime$ pole mass.
Combined (electron and muon channels) upper limits at the 95% CL on the cross section for SSM $W^\prime$ production and decay to a single lepton generation as a function of the $W^\prime$ pole mass.
A search for the electroweak production of charginos, neutralinos and sleptons decaying into final states involving two or three electrons or muons is presented. The analysis is based on 36.1 fb$^{-1}$ of $\sqrt{s}=13$ TeV proton--proton collisions recorded by the ATLAS detector at the Large Hadron Collider. Several scenarios based on simplified models are considered. These include the associated production of the next-to-lightest neutralino and the lightest chargino, followed by their decays into final states with leptons and the lightest neutralino via either sleptons or Standard Model gauge bosons; direct production of chargino pairs, which in turn decay into leptons and the lightest neutralino via intermediate sleptons; and slepton pair production, where each slepton decays directly into the lightest neutralino and a lepton. No significant deviations from the Standard Model expectation are observed and stringent limits at 95% confidence level are placed on the masses of relevant supersymmetric particles in each of these scenarios. For a massless lightest neutralino, masses up to 580 GeV are excluded for the associated production of the next-to-lightest neutralino and the lightest chargino, assuming gauge-boson mediated decays, whereas for slepton-pair production masses up to 500 GeV are excluded assuming three generations of mass-degenerate sleptons.
Expected 95% CL exclusion limit for chargino-pair production.
Observed 95% CL exclusion limit for chargino-pair production.
Expected 95% CL exclusion limit for direct slepton production.