A measurement of the $\bjet$ production cross section is presented for events containing a $Z$ boson produced in $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV, using data corresponding to an integrated luminosity of 2 fb$^{-1}$ collected by the CDF II detector at the Tevatron. $Z$ bosons are selected in the electron and muon decay modes. Jets are considered with transverse energy $E_T>20$ GeV and pseudorapidity $|\eta|<1.5$ and are identified as $\bjets$ using a secondary vertex algorithm. The ratio of the integrated $Z+\bjet$ cross section to the inclusive $Z$ production cross section is measured to be $3.32 \pm 0.53 {\rm (stat.)} \pm 0.42 {\rm (syst.)}\times 10^{-3}$. This ratio is also measured differentially in jet $E_T$, jet $\eta$, $Z$-boson transverse momentum, number of jets, and number of $\bjets$. The predictions from leading order Monte Carlo generators and next-to-leading-order QCD calculations are found to be consistent with the measurements within experimental and theoretical uncertainties.
Ratio of integrated Z0 + bjet cross section to inclusive Z0 production.
Ratio of the Z0 + bjet to Z0 cross section as a function of the bjet ET.
Ratio of the Z0 + bjet to Z0 cross section as a function of the bjet pseudorapidity.
The inclusive production of charged hadrons in the collisions of quasi-real photons e+e- -> e+e- +X has been measured using the OPAL detector at LEP. The data were taken at e+e- centre-of-mass energies from 183 to 209 GeV. The differential cross-sections as a function of the transverse momentum and the pseudorapidity of the hadrons are compared to theoretical calculations of up to next-to-leading order (NLO) in the strong coupling constant alpha{s}. The data are also compared to a measurement by the L3 Collaboration, in which a large deviation from the NLO predictions is observed.
Differential inclusive charged hadron production cross section as a function of PT.
Differential inclusive charged hadron production cross section as a function of PT.
Differential inclusive charged hadron production cross section as a function of PT.
For the first time at LEP the production of prompt photons is studied in the collisions of quasi-real photons using the OPAL data taken at e+e- centre-of-mass energies between 183 GeV and 209 GeV. The total inclusive production cross-section for isolated prompt photons in the kinematic range of photon transverse momentum larger than 3.0 GeV and absolute photon pseudorapidity less than 1 is determined to be 0.32 +- 0.04 (stat) +- 0.04 (sys) pb. Differential cross-sections are compared to the predictions of a next-to-leading-order (NLO) calculation.
The total prompt photon cross section in the kinematic range defined by theanti tagging condition.
Differential cross section in PT.
Differential cross section in ETARAP.
The inclusive production of D$^{*\pm}$ mesons in two-photon collisions is measured with the ALEPH detector at $\epem$ centre-of-mass energies from 183$\unit{GeV}$ to 209$\unit{GeV}$. A total of $360 \pm 27$ D$^{*\pm}$ meson events were observed from an integrated luminosity of 699\unit{pb^{-1}}$. Contributions from direct and single-resolved rocesses are separated using the ratio of the transverse momentum $p_{\rm t}^{\rm D^{*\pm}}$ of the D$^{*\pm}$ to the visible invariant mass $W_{\mathrm{vis}}$ of the event. Differential cross sections of D$^{*\pm}$ production as functions of $p_{\rm t}^{\rm D^{*\pm}}$ and the pseudorapidity $|\eta^{\rm D^{*\pm}}| $ are measured in the range $ 2\unit{GeV}/c < p_{\rm t}^{\rm D^{*\pm}} < 12\unit{GeV}/c $ and $ |\eta^{\rm D^{*\pm}}| < 1.5 $. They are compared to next-to-leading order (NLO)perturbative QCD calculations. The extrapolation of the integrated visible D$^{*\pm}$ cross section to the total charm cross section, based on the Pythia Monte Carlo program, yields $ \sigma (\epem \to \epem \ccbar)_ {=197\unit{GeV}} = 731 \pm 74_{\mathrm{stat}} \pm 47_{\mathrm{syst}} \pm 157_{\mathrm{extr}} \unit{pb} $.
Total extrapolated charm production cross section. The second DSYS error isdue to the uncertainty in the extrapolation.
Visible cross section with the acceptance range.
Visible cross section within the acceptance ranges for the three decay modes observed.
Di-jet producion is studied in collisions of quasi-real photons at e+e- centre- of-mass energies sqrt(s)ee from 189 to 209 GeV at LEP. The data were collected with the OPAL detector. Jets are reconstructed using an inclusive k_t clustering algorithm for all cross-section measurements presented. A cone jet algorithm is used in addition to study the different structure of the jets resulting from either of the algorithms. The inclusive di-jet cross-section is measured as a function of the mean transverse energy Etm(jet) of the two leading jets, and as a functiuon of the estimated fraction of the photon momentum carried by the parton entering the hard sub-process, xg, for different regions of Etm (jet). Angular distribution in di-jet events are measured and used to demonstrate the dominance of quark and gluon initiated processes in different regions of phase space. Furthermore the inclusive di-jet cross-section as a function of |eta(jet)| and |delta eta (jet)| is presented where eta(jet) is the jet pseudo-rapidity. Different regions of the xg+ -xg- -space are explored to study and control the influence of an underlying event. The results are compared to next-to-leading order perturbative QCD calculations and to the predictions of the leading order Monte Carlo generator PYTHIA.
The di-jet cross section as a function of the angle between the jet and thedirection of the incoming parton in the centre-of-mass frame for the region whe re both X(C=GAMMA+) and X(C=GAMMA-) are > 0.75.
The di-jet cross section as a function of the angle between the jet and thedirection of the incoming parton in the centre-of-mass frame for the region whe re both X(C=GAMMA+) and X(C=GAMMA-) are < 0.75.
The di-jet cross section as a function of the mean transverse energy of thedi-jet system for the full X(C=GAMMA+) and X(C=GAMMA-) region.
The inclusive cross section for J/ψ production times the branching ratio B(J/ψ→μ+μ−) has been measured in the forward pseudorapidity region: B×dσ[p¯+p→J/ψ(pT>10GeV/c,2.1<|η|<2.6)+X]/dη=192±9(stat)±29(syst)pb. The results are based on 74.1±5.2pb−1 of data collected by the CDF Collaboration at the Fermilab Tevatron Collider. The measurements extend earlier measurements of the D0 Collaboration to higher pTJ/ψ. In the kinematic range where the experiments partially overlap, these data are in good agreement with previous measurements.
The integrated cross section for J/PSI --> MU+ MU- decay.
Cross section as a function of PT. Statistical errors only.
Dijet production has been studied in neutral current deep inelastic e+p scattering for 470 < Q**2 < 20000 GeV**2 with the ZEUS detector at HERA using an integrated luminosity of 38.4 pb**{-1}. Dijet differential cross sections are presented in a kinematic region where both theoretical and experimental uncertainties are small. Next-to-leading-order (NLO) QCD calculations describe the measured differential cross sections well. A QCD analysis of the measured dijet fraction as a function of Q**2 allows both a precise determination of alpha_s(M_Z) and a test of the energy-scale dependence of the strong coupling constant. A detailed analysis provides an improved estimate of the uncertainties of the NLO QCD cross sections arising from the parton distribution functions of the proton. The value of alpha_s(M_Z), as determined from the QCD fit, is alpha_s(M_Z) = 0.1166 +- 0.0019 (stat.) {+ 0.0024}_{-0.0033} (exp.)} {+ 0.0057}_{- 0.0044} (th.).
The differential dijet cross section dsig/dZP1.
The differential dijet cross section dsig/dlog10(x).
The differential dijet cross section dsig/dlog10(xi).
Differential cross sections for dijet photoproduction in association with a leading neutron using the reaction e^+ + p --> e^+ + n + jet + jet + X_r have been measured with the ZEUS detector at HERA using an integrated luminosity of 6.4 pb^{-1}. The fraction of dijet events with a leading neutron in the final state was studied as a function of the jet kinematic variables. The cross sections were measured for jet transverse energies E^{jet}_T > 6 GeV, neutron energy E_n > 400 GeV, and neutron production angle theta_n < 0.8 mrad. The data are broadly consistent with factorization of the lepton and hadron vertices and with a simple one-pion-exchange model.
The differential dijet cross section as a function of ET for the inclusive data set. The second DSYS error is due to the uncertainty in the calorimeter energy scale.
The differential dijet cross section as a function of ET for the neutron-tagged data set. The second DSYS error is due to the uncertainty in the calorimeter energy scale.
The differential dijet cross section as a function of ETARAP for the inclusive data set. The second DSYS error is due to the uncertainty in the calorimeterenergy scale.
The first measurement of inclusive Ds+- photoproduction at HERA has been performed with the ZEUS detector for photon-proton centre-of-mass energies 130 < W < 280 GeV. The measured cross section for 3 < pt(Ds) < 12 GeV and |eta(Ds)|< 1.5 is sigma(ep -> Ds X) = 3.79 +- 0.59 (stat.) +0.26-0.46 (syst.) +- 0.94 (br.) nb, where the last error arises from the uncertainty in the Ds decay branching ratio. The measurements are compared with inclusive D*+- photoproduction cross sections in the same kinematic region and with QCD calculations. The Ds cross sections lie above a fixed-order next-to-leading order calculation and agree better with a tree-level O(alpha,alpha_s^3) calculation that was tuned to describe the ZEUS D* cross sections. The ratio of Ds+- to D*+- cross sections is 0.41 +- 0.07 (stat.) +0.03-0.05 (syst.) +- 0.10 (br.). From this ratio, the strangeness-suppression factor in charm photoproduction, within the LUND string fragmentation model, has been calculated to be gamma_s = 0.27 +- 0.05 +- 0.07 (br.). The cross-section ratio and gamma_s are in good agreement with those obtained in charm production in e+e- annihilation.
The differential cross section as a function of PT. The mean values of PT are given as the average values of an exponential fit to the PT distribution in each bin. There is an additional 25 PCT systematic error due to the D/S --> PHI PI branching ratio uncertainty.
The differential cross section as a function of pseudorapidity. There is anadditional 25 PCT systematic error due to the D/S --> PHI PI branching ratio un certainty.
The total inclusive cross section. CT.= The second systematic error (DSYS) is due to the branching ratio uncertainty.
The inclusive production of D*+- mesons in photon-photon collisions has been measured using the OPAL detector at LEP at e+e- centre-of-mass energies of 183 and 189GeV. The D* mesons are reconstructed in their decay to D0pi+ with the D0 observed in the two decay modes Kpi+ and Kpi+pi-pi+. After background subtraction, 100.4+-12.6(stat) D*+- mesons have been selected in events without observed scattered beam electron ("anti-tagged") and 29.8+-5.9 (stat) D*+- mesons in events where one beam electron is scattered into the detector ("single-tagged"). Direct and single-resolved events are studied separately. Differential cross-sections as functions of the D* transverse momentum p_t and pseudorapidity \eta are presented in the kinematic region 2
Differential PT distribution for anti-tagged events for both D* decay modesand combined.
Differential ETARAP distribution for anti-tagged events for both D* decay modes and combined.
Integrated cross section using the anti-tagged events for D* production in the kinematic range of the experiment.