The polarization of Ξ¯ + hyperons produced by 800-GeV/c protons in the inclusive reaction p+Be→Ξ¯ ++X has been measured. The average polarization of the Ξ¯ +, at a mean xF=0.39 and pt=0.76 GeV/c, is -0.097±0.012±0.009. The magnetic moment of the Ξ¯ + is 0.657±0.028±0.020 nuclear magneton.
No description provided.
No description provided.
No description provided.
The polarization of 103 211 Ω− hyperons produced in 800 GeV proton-beryllium inclusive reactions has been measured. Between 0.3<xF<0.7 and 0.5<pt<1.3 GeV/c, the Ω− polarization is found to be consistent with zero, with a mean value of -0.01±0.01 at 〈xF〉=0.5 and 〈pt〉=0.95 GeV/c. This behavior is similar to that of Λ¯0, which also does not have any quarks in common with the incident proton, but is different from Ξ¯+, which is significantly polarized in the same kinematic region.
Omega- polarization at the target.
No description provided.
With 4.36×106 events, spin precession in a magnetic field has been used to measure the magnetic moment of the Ξ− hyperon as -0.6505±0.0025 nuclear magnetons.
No description provided.
The polarization PΞ− of Ξ− hyperons produced by 800-GeV protons has been measured for xF from 0.3 to 0.7 and pT from 0.5 to 1.5 GeV/c. PΞ− has a pT dependence similar to that of the Λ but has a different xF behavior. Also, an energy dependence of PΞ− has been observed.
1.3 mv production angle was horizontal. Others are vertical.
A sample of 24 700 Ω− hyperons was produced by a prolarized neutral beam in a spin-transfer reaction. The Ω− polarizations are found to be -0.054±0.019 and -0.149±0.055 at mean Ω− momenta of 322 and 398 GeV/c, respectively. The directions of these polarizations give an Ω− magnetic moment of -(1.94±0.17±0.14)μN
No description provided.
The analyzing power,$A_{oono}$, and the polarization transfer observables$K_{onno}$,$K_{os''so}$
Position 'A' (see text for explanation).
Position 'A' (see text for explanation).
Position 'A' (see text for explanation).
We employ data taken by the JADE and OPAL experiments for an integrated QCD study in hadronic e+e- annihilations at c.m.s. energies ranging from 35 GeV through 189 GeV. The study is based on jet-multiplicity related observables. The observables are obtained to high jet resolution scales with the JADE, Durham, Cambridge and cone jet finders, and compared with the predictions of various QCD and Monte Carlo models. The strong coupling strength, alpha_s, is determined at each energy by fits of O(alpha_s^2) calculations, as well as matched O(alpha_s^2) and NLLA predictions, to the data. Matching schemes are compared, and the dependence of the results on the choice of the renormalization scale is investigated. The combination of the results using matched predictions gives alpha_s(MZ)=0.1187+{0.0034}-{0.0019}. The strong coupling is also obtained, at lower precision, from O(alpha_s^2) fits of the c.m.s. energy evolution of some of the observables. A qualitative comparison is made between the data and a recent MLLA prediction for mean jet multiplicities.
Overall result for ALPHAS at the Z0 mass from the combination of the ln R-matching results from the observables evolved using a three-loop running expression. The errors shown are total errors and contain all the statistics and systematics.
Weighted mean for ALPHAS at the Z0 mass determined from the energy evolutions of the mean values of the 2-jet cross sections obtained with the JADE and DURHAMschemes and the 3-jet fraction for the JADE, DURHAM and CAMBRIDGE schemes evaluted at a fixed YCUT.. The errors shown are total errors and contain all the statistics and systematics.
Combined results for ALPHA_S from fits of matched predicitions. The first systematic (DSYS) error is the experimental systematic, the second DSYS error isthe hadronization systematic and the third is the QCD scale error. The values of ALPHAS evolved to the Z0 mass using a three-loop evolution are also given.
A polarized proton beam extracted from SATURNE II and the Saclay polarized proton target were used to measure the rescattering observables$K_{onno}$and
No description provided.
No description provided.
No description provided.
A measurement of novel event shapes quantifying the isotropy of collider events is performed in 140 fb$^{-1}$ of proton-proton collisions with $\sqrt s=13$ TeV centre-of-mass energy recorded with the ATLAS detector at CERN's Large Hadron Collider. These event shapes are defined as the Wasserstein distance between collider events and isotropic reference geometries. This distance is evaluated by solving optimal transport problems, using the 'Energy-Mover's Distance'. Isotropic references with cylindrical and circular symmetries are studied, to probe the symmetries of interest at hadron colliders. The novel event-shape observables defined in this way are infrared- and collinear-safe, have improved dynamic range and have greater sensitivity to isotropic radiation patterns than other event shapes. The measured event-shape variables are corrected for detector effects, and presented in inclusive bins of jet multiplicity and the scalar sum of the two leading jets' transverse momenta. The measured distributions are provided as inputs to future Monte Carlo tuning campaigns and other studies probing fundamental properties of QCD and the production of hadronic final states up to the TeV-scale.
IRing2 for HT2>=500 GeV, NJets>=2
IRing2 for HT2>=500 GeV, NJets>=3
IRing2 for HT2>=500 GeV, NJets>=4
The strong coupling constant, αs, has been determined in hadronic decays of theZ0 resonance, using measurements of seven observables relating to global event shapes, energy correlatio
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.