We report on the production of J/psi mesons in 530 and 800 GeV/c proton - Be collisions in the Feynman-x range 0.0 < xf < 0.6. The J/psi mesons were detected via decays into opposite sign muon pairs. Differential distributions for J/psi production have been measured as functions of xf, pT^2, and cosine of the Gottfried-Jackson decay angle. These distributions are compared with results on J/psi production obtained in 515 GeV/c pion - Be collisions, measured by the same experiment, as well as with results from other experiments using incident protons.
Differential XL distribution for J/PSI production in 530 GeV pBe collisions. Errors are combined statistics and systematics.
Differential PT**2 distribution for J/PSI production in 530 GeV pBe collisions. Errors are combined statistics and systematics.
Differential COS(THETA) distribution for J/PSI production in 530 GeV pBe collisions. Errors are combined statistics and systematics.
We present the xF and pT differential cross sections of J/ψ and ψ′, respectively, in the ranges −0.05<xF<0.25 and pT<3.5 GeV/c. The data samples are constituted by about 12 000 J/ψ and 200 ψ′ produced in proton-silicon interactions at 800 GeV/c and decaying into opposite sign muons. The xF and pT distributions are compared with recent results from experiments E789 at the same energy and to leading order QCD predictions using the MRS D0 parametrization for the parton structure function. The measured shapes of the differential cross sections, except for the dσ/dxF at small xF, agree very well with the prediction, even though their value is quite a bit larger than the prediction. We also present the cosθ differential cross section of the J/ψ which indicates unpolarized production in contrast with color octet models predictions.
Additional systematic error given above.
Additional systematic error given above.
Additional systematic error given above.
We have studied the production of J/ψ and ψ(2S) charmonium mesons in 515 GeV/c π−Be collisions in the Feynman-x range 0.1<xF<0.8. J/ψ mesons were detected via their decay into μ+μ−, and ψ(2S) mesons were studied in both the μ+μ− and J/ψπ+π− decay modes. J/ψ differential cross sections have been measured as functions of xF,pT2, and the cosine of the Gottfried-Jackson decay angle. We measure an inclusive J/ψ cross section of B(J/ψ→μ+μ−)σ(π−Be→J/ψ+X)/A= [9.3±0.1(stat)±1.1(syst)] nb/nucleon for J/ψ xF≳0.1. Our results are compared with those from other experiments performed at lower beam energies. We also measure the differential ψ(2S) cross section as a function of both xF and pT2, and a ψ(2S) inclusive cross section of B(ψ(2S)→J/ψπ+π−)σ(π−Be→ψ(2S)+X)/A=[7. 4±1.5(stat)±1.2(syst)] nb/nucleon for ψ(2S) xF≳0.1. The fraction of the inclusive J/ψ yield due to ψ(2S) meson decays is 0.083±0.017(stat) ±0.013(syst), and the observed ratio of ψ(2S) decay rates is B(ψ(2S)→J/ψπ+π−)/B(ψ(2S)→μ+μ−) =30.2±7.2(stat)±6.8(syst). We have searched for production of ‘‘hidden’’ charm resonances decaying into either J/ψπ±,ψ(2S)π±, or J/ψπ+π− systems, and report an upper limit of 3.1 nb/nucleon for the product of branching ratio and cross section for the recently reported enhancement at a J/ψπ+π− mass of 3.836 GeV/c2. © 1996 The American Physical Society.
Statistical errors only. Normalization uncertainty is 12%.
Statistical errors only. Normalization uncertainty is 12%.
Statistical errors only. Normalization uncertainty is 12%.. Theta is the angle between the MU+ and the beam axis in the J/PSI restframe (Gottfried-Jackson decay angle).
None
Data is extrapolated to full x range.
Data requested from authors.
None
AVERAGE OVER ALL TARGETS.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
None
THE BETTER FIT FOR PI- AND BARIONBAR IS THE SUM OF TWO EXPONENT: A*EXP(-B1*PT**2)+D*EXP(-B2*PT**2).FOR PI- B1=30+-4 AND B2=6.3+-.3 .FOR BARIONBAR B1=46+-18 AND B2=3.9+-.5.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
Multihadronic e+e− annihilation events at a center-of-mass energy of 29 GeV have been studied with both the original (PEP 5) Mark II and the upgraded Mark II detectors. Detector-corrected distributions from global shape analyses such as aplanarity, Q2-Q1, sphericity, thrust, minor value, oblateness, and jet masses, and inclusive charged-particle distributions including x, rapidity, p⊥, and particle flow are presented. These distributions are compared with predictions from various multihadron event models which use leading-logarithmic shower evolution or QCD matrix elements at the parton level and string or cluster fragmentation for hadronization. The new generation of parton-shower models gives, on the average, a better description of the data than the previous parton-shower models. The energy behavior of these models is compared to existing e+e− data. The predictions of the models at a center-of-mass energy of 93 GeV, roughly the expected mass of the Z0, are also presented.
Aplanarity distribution.
QX Distribution(QX=SQRT(3)*(Q3-Q2)).
The (Q2-Q1) distribution.