The spin correlation parameter A00NN for 497.5 MeV proton + proton elastic scattering was determined over the center-of-momentum scattering angle region 23.1°–64.9 °. The new A00NN extend to more forward angles than existing A00NN and have significantly smaller statistical errors (±0.01–0.04). The A00NN are qualitatively described by recent phase shift analyses, but a quantitative shape and normalization discrepancy remains in the forward angle region. These new data provide important constraints for nucleon-nucleon spin-dependent amplitudes at forward angles which are used in theoretical models of nucleon-nucleus scattering.
Errors include statistical and systematic uncertainties.
This work extends our previous investigations at the CERN Intersecting Storage Rings, with improved statistics at three different energies, wider angular range and a better control over systematic errors. Values for the (diffraction) shape parameter b are given.
No description provided.
No description provided.
No description provided.
The first result of the pp2pp experiment at RHIC on elastic scattering of polarized protons at sqrt{s} = 200 GeV is reported here. The exponential slope parameter b of the diffractive peak of the elastic cross section in the t range 0.010 <= |t| <= 0.019 (GeV/c)^2 was measured to be b = 16.3 +- 1.6 (stat.) +- 0.9 (syst.) (GeV/c)^{-2} .
Measured slope of the elastic cross section.
The polarization parameter has been measured in K − p elastic scattering at eight incident beam momenta between 650 MeV/ c and 1071 MeV/ c throughout a center of mass angular range of −0.75 < cos θ ∗ < 0.85 . Experimental results and coefficients of Legendre polynomial fits to the data are presented and compared with other measurements and partial wave analysis.
No description provided.
No description provided.
No description provided.
We have investigated the above processes at the CERN Intersecting Storage Rings (ISR). Results show a marked change of the slope parameter b ( t , s ) = (d/d t ) ln (d σ /d t ) around − t ≈ 0.10 GeV 2 . The s − and t − dependence of b ( t , s ) have been observed over the interval 460 GeV 2 < s < 2900 GeV 2 and 0.02 GeV 2 < t < 0.40 GeV 2 .
No description provided.
No description provided.
No description provided.
Proton-proton elastic scattering has been measured over the angular range 7 to 16 mrad at centre-of-mass energies of 31, 45 and 53 GeV using the CERN Intersecting Storage Rings. The results indicate that the diffraction peak has continued to shrink with increasing energy, but not as fast as suggested by the results at lower energies.
No description provided.
The differential cross section of π − p scattering has been measured in the energy region 100–345 GeV and in the t -range 0.002<| t |< 0.04 (GeV/ c ) 2 . The real part of the π − p scattering amplitude has been extracted from the data. The results show that the real part continues to increase with energy. The energy dependence of the slope parameter has also been determined. The shrinkage found expressed in terms of the slope of the pomeron trajectory is2 α ′ p =0.23±0.04 (GeV/ c ) −2 . This agrees with the energy dependence found at larger| t |-values.
RE(AMP)/IM(AMP) (REAL/IMAG) AND SLOPE PARAMETERS DEDUCED FROM A FIT TO D(SIG)/DT IN T HE COULOMB INTERFERENCE REGION (-T = 0.002 TO 0.04 GEV**2).
We are reporting on a new determination of sin 2 ϑ w from the ratio of v μ e to v e scattering cross sections. A new detector designed for this purpose was exposed tothe Wide Band Neutrino Beamof the 450 GeV (CERN SPS. An analysis of data taken in 1987 and 1988 is presented based on 762 v μ e and 1017 v e events. From the ratio of σ( v μ e ) to σ( v μ e ) we determined sin 2 ϑ w =0.233±0.012 ( stat ) ± 0.008 ( syst ) without radiative correction. With radiative correction for m t = m H =100 GeV we find sin 2 ϑ w =0.232±0.012( stat )±0.008( syst ).
Data without electroweak radiative corrections.
Data corrected for electroweak radiative effects with TOP and HIGGS masses 100 GeV.
We report a measurement of the negative pion electromagnetic form factor in the range of space-like four-momentum transfer 0.014 < q 2 < 0.122 (GeV/ c ) 2 . The measurement was made by the NA7 collaboration at the CERN SPS, by observing the interaction of 300 GeV pions with the electrons of a liquid hydrogen target. The form factor is fitted by a pole form with a pion radius of 〈r 2 〈 1 2 = 0.657 ± 0.012 fm.
Errors are statistical only.
The pion form factor has been measured in the space-like q 2 region 0.014 to 0.26 (GeV/ c ) 2 by scattering 300 GeV pions from the electrons of a liquid hydrogen target. A detailed description is given of the apparatus, data analysis and corrections to the data. The mean square charge radius extracted from the data is model-dependent. We find that a form which includes a realistic description of the form factor phase gives a similar results to the naive pole form, and conclude 〈r 2 π 〉 = 0.438±0.008 fm 2 .
No description provided.