We present preliminary results from a sample of ∼ 1200 events obtained from an exposure of the 30-in. Argonne National Laboratory—National Accelerator Laboratory liquid-hydrogen bubble chamber to 102-GeVc protons. The elastic and total inelastic cross sections are respectively 6.9 ± 1.0 and 32.8 ± 1.1 mb. The parameters of the multiplicity distribution for negative tracks are 〈n−〉=2.17±0.07, D−2=〈n−2〉−〈n−〉2=2.56±0.12, and f2−=D−2−〈n−〉=0.39±0.10.
No description provided.
We have measured the cross sections at 90° c.m. for π± and π0 photoproduction with polarized photons. The photon energies ranged from 0.8 to 2.2 GeV. We compare the resonant "bumps" in the cross section with theoretical models. The measured asymmetry agrees with a quark-model calculation though the predicted cross sections are low.
No description provided.
No description provided.
No description provided.
The total cross sections of π± on protons in the momentum interval from 0.40 to 0.90 GeV/c have been measured with high relative precision. In this interval the statistical error varies between 10 and 20 μb. No new structure is observed.
No description provided.
The total cross sections of 18.7 GeV Σ − hyperons on protons and deutrons have been measured to be 34.0 ± 1.1 mb and 61.3 + 1.4 mb, respectively. The derived Σ − -neutron cross section is 30.0 ± 1.2 mb.
CROSS SECTIONS CORRECTED FOR FORWARD COULOMB AND NUCLEAR SCATTERING.
We have measured the differential cross-section for the reaction p p → π + Λ − at 5 GeV /c , the π + being in t he cm angular range 0.47 < cos θ p π + cm < 0.98 , corresponding to 0.12 < − t < 2.40 (GeV/ c ) 2 . The angular distribution has a forward peak with a differential cross-section d σ d ω = 4.1 ± 1.6 μ b / sr for 0.94 < cos θ p π + cm < 0.96 .
No description provided.
No description provided.
The proof is given for the existence of the reaction e + e − → h ± h ∓ in the energy range 1400–2400 MeV, and its energy dependence is compared with that of e + e − → e ± e ∓ , in the same experimental conditions of observation. The exponent of the s -dependence of the ratio α = (e + e − → h ± h ∓ )/ (e + e − → e ± e ∓ ) is measured to be n = 2.08 ± 0.45, in the s -range (1.96 − 5.76) GeV 2 , on the basis of 51 e + e − → h ± h ∓ events and 8918 e + e − → e ± e ∓ events observed.
CROSS SECTION FOR PRODUCTION OF CHARGED HADRON PAIRS.
Decay correlation data for π − p → K ∗ Λ at 3.9 GeV /c are analyzed to determine the amplitude structure. We emphasize combinations of observables invariant under rotations between s and t channel frames.
No description provided.
It is found in the reactions π ± p →( π ± π + π − )p, believed to be dominated by diffraction dissociation, that the d σ d t′ distributions show a “cross-over” effect at t ′ ≈ 0.15, similar to the effect observed in elastic scattering. This gives evidence for the interference of ( ϱ 0 , B 0 ,…)-exchanges with ( P , f 0 , …) -exchanges in pion diffraction dissociation reactions. No such evidence is found for baryon dissociation, π ± p → π ± (p π + π − ), at the same energy.
No description provided.
No description provided.
No description provided.
A large solid angle detector has been used to observe two body events produced by electron-positron collisions in the Orsay storage ring. From the π + π − excitation curve in the ϱ region we have deduced the amplitude and the phase of the ω-ϱ interference, and the ϱ resonance paramaters: M ϱ = (775.4±7.3) MeV, Γ ϱ = (149.6 ± 23.2) MeV, √ B ( ω → π + π − ) = 0.19 ± 0.05, φ = (85.7 ± 15.3) 0 , σ ( e + e − → ϱ ) = (1.00 ± 0.13) μ b at S = M ϱ 2 , B ( ϱ → e + e − = (4.1 ± 0.5) × 10 −5 , Γ ( ϱ → e + e − ) = (6.1 ± 0.7) keV, ( g ϱ 2 /4 π ) = 2.26 ± 0.25, ( g ϱππ 2 /4 π ) = 2.84 ± 0.50.
STATISTICAL ERRORS ONLY. CROSS SECTION AT RHO0 PEAK IS 1.00 +- 0.13 MUB FROM FIT.
The differential cross section and polarization in p−d elastic scattering have been measured at an incident laboratory momentum of 0.99 GeVc (kinetic energy 425 MeV) over most of the angular range. Elastic p−d scattering events from a CD2 target were selected by angular correlation, coplanarity, and time of flight. A significant feature of the results is the large positive polarization at backward scattering angles.
No description provided.