We report γp total, topological, and channel cross sections at 9.3 GeV from a bubblechamber experiment using a nearly monoenergetic photon beam.
No description provided.
The π−+p→π0+n differential cross section at 180° has been measured for 52 values of π− momentum from 1.8 to 6.0 GeV/c using a constant-geometry detection system. The average statistical uncertainty is ∼5% and the systematic uncertainty is ∼10%. The details of the experiment and the data analysis are discussed. The data are compared with those of other experiments with which they are generally in agreement. One set of data disagrees with those presented here and a possible reason for this is discussed. A five-parameter fit of the predictions of a dual-resonance model to our data gave excellent agreement. The differential cross sections at 180° for π±p elastic scattering have been compiled and the moduli and relative phase of the T=12 and T=32 pion-nucleon s- and u-channel amplitudes (|A12|, |A32|, and cosδ) have a minimum at u=0.4 GeV/c and, in the s channel, a corresponding minimum at s=2.2 GeV/c.
No description provided.
No description provided.
No description provided.
Data on polarization in backward elastic π + p scattering at 2.0, 3.5 and 4.0 GeV/ c are presented. The data at 2.0 GeV/ c are compared with the result of a recent phase-shift analysis. Our data at 3.5 and 4.0 GeV/ c , and existing data above 3 GeV/ c , show no significant energy dependence of the polarization over the measured u -range. A comparison with Regge models and with results from amplitude analysis is made.
No description provided.
No description provided.
No description provided.
The differential cross section has been measured for the reaction γ +p→p+ π o at the Bonn 2.5 GeV electron synchrotron in the energy range from 0.4 to 2.2 GeV for a c.m. angle of 150 degrees. The protons were detected in a magnetic spectrometer system. The excitation curve shows a distinct resonance structure. The total corrections to the counting rate are about 3%. The contribution of the process γ +p→p+2 π was separated. The uncertainty of this separation leads to an error of about 4% in the cross section.
No description provided.
No description provided.
We present results of measurements of K ± p and p p elastic scattering and of the annihilation reactions p p →π + π − and p p → K + K − at an incident laboratory momentum of 5 GeV/ c . Nearly complete angular distributions were obtained. Results are also presented for π -meson proton elastic scattering in the momentum transfer ranges 2 < − t < 8 (GeV/ c ) 2 (for π + ) and 0.16 < − t < 7 (GeV/ c ) 2 (for π − ). All measurements were done in one experimental geometry. The measured differential cross sections range from 10 to 10 −5 mb/(GeV/ c ) 2 .
-U = T + 8.486 GEV**2.
THE DATA FOR -T = 7.31 TO 8.45 GEV**2 WERE NORMALIZED TO OTHER EXPERIMENTS.
-U = T + 8.304 GEV**2.
Topological and channel cross sections are given for the more common final states produced in K − p interactions at 8.25 GeV/ c together with the single particle inclusive cross sections. We present cross sections for prominent resonances occurring in final states K N (nπ) and find the resonance fractions to be roughly independent of multiplicity.
SE FOLDED.
No description provided.
No description provided.
We have measured the reaction γ p → p π + π − in the DESY 1 m Streamer Chamber. The dominant ϱ o production is analyzed in terms of various models.
No description provided.
FOR ALL EVENTS.
FOR ALL TWO PION EVENTS.
We have measured cross section for γ , K S °, Λ and Λ production at 102 GeV/ c and find: σ ( γ ) = 170 ± 16 mb ., σ ( K S °) = 4.6 ± 0.5 mb ., σ ( Λ ) = 3.2 ± 0.4 mb ., and σ( Λ ) = 0.23 ± 0.10 mb. Both 〈 n π °〉 and 〈 n Ks °〉 appear to rise linearly with n - while the ratio 〈 n Ks °〉/〈 n π °〉 is approximately independent of n - . The integrated invariant cross section as a function of x as well as d σ /d y and d σ /d p T 2 are presented and compared with other data.
No description provided.
The p p → n n polarization has been measured at 8 GeV/ c and for − t values ranging from 0 up to 0.8 (GeV/ c ) 2 . A small and negative polarization has been found.
ERRORS INCLUDE STATISTICAL AS WELL AS RELATIVELY SMALL SYSTEMATIC EFFECTS.
In a counter and wire spark chamber experiment with a polarized target, backward kaons were detected, and the Σ + 's identified by a missing-mass technique. An average polarization of −0.08 ± 0.05 was found for −0.2 < u < 0.1 GeV 2 .
THE MEAN POLARIZATION FOR ALL EVENTS IS -0.08 +- 0.05.