The e + e − → W + W − cross section is measured in a data sample collected by ALEPH at a mean centre-of-mass energy of 172.09 GeV, corresponding to an integrated luminosity of 10.65 pb −1 . Cross sections are given for the three topologies, fully leptonic, semi-leptonic and hadronic of a W-pair decay. Under the assumption that no other decay modes are present, the W-pair cross section is measured to be 11.7±1.2 (stat.) ±0.3 (syst.) pb . The existence of the triple gauge boson vertex of the Standard Model is clearly preferred by the data. The decay branching ratio of the W boson into hadrons is measured to be B(W→hadrons) =67.7±3.1 (stat.) ±0.7 (syst.) % , allowing a determination of the CKM matrix element | V cs |=0.98±0.14(stat.)±0.03(syst.).
Cross sections for the different topologies.
Combined W+ W- cross section.
We have searched for heavy neutral gauge bosons (Z′) in dielectron and dimuon decay modes using 110pb−1 of p¯p collisions at s=1.8TeV collected with the Collider Detector at Fermilab. We present a limit on the production cross section times branching ratio of a Z′ boson decaying into dileptons as a function of Z′ mass. For mass MZ′>600GeV/c2, the upper limit is 40 fb at 95% confidence level. We set the lower mass limits of 690, 590, 620, 595, 565, 630, and 600GeV/c2 for ZSM′, Zψ, Zη, Zχ, ZI, ZLR, and ZALRM, respectively.
M is the mass of ZPRIME boson. Sigma times branching ratio.
The dilepton mass spectrum in pp¯→l+l−+X interactions is studied using dielectrons (ee) and dimuons (μμ) in 110pb−1 of data collected with the Collider Detector at Fermilab. The data are consistent with standard model predictions. The mass spectrum, being a probe for new physics, is examined for new interactions of quarks and leptons from a common composite structure. Assuming a contact interaction with the conventional coupling g02/4π=1, limits on chiral quark-electron and quark-muon compositeness scales in the range of 2.5 to 4.2 TeV are obtained.
Di-electron data and Standard Model event predicitions.
Di-muon data and Standard Model event predicitions.
We report on a precision measurement of the neutron spin structure function $g^n_1$ using deep inelastic scattering of polarized electrons by polarized ^3He. For the kinematic range 0.014<x<0.7 and 1 (GeV/c)^2< Q^2< 17 (GeV/c)^2, we obtain $\int^{0.7}_{0.014} g^n_1(x)dx = -0.036 \pm 0.004 (stat) \pm 0.005 (syst)$ at an average $Q^2=5 (GeV/c)^2$. We find relatively large negative values for $g^n_1$ at low $x$. The results call into question the usual Regge theory method for extrapolating to x=0 to find the full neutron integral $\int^1_0 g^n_1(x)dx$, needed for testing quark-parton model and QCD sum rules.
No description provided.
No description provided.
No description provided.
Using data collected in the region of the Upsilon(4S) resonance with the CLEO II detector operating at the Cornell Electron Storage Ring CESR, we present the first observation of B mesons decaying into the charmed strange baryons Xi_c0 and Xi_c+. We find 79 +/- 27 Xi_c0 and 125 +/- 28 Xi_c+ candidates from B decays, leading to product branching fractions of BR(Bbar -> Xi_c0 X)BR(Xi_c0 -> Xi- pi+) = (0.144 +/- 0.048 +/- 0.021) x 10~-3 and BR(Bbar -> Xi_c+ X)BR(Xi_c+ -> Xi- pi+ pi+) = (0.453 +/- 0.096 +0.085-0.065) x 10~-3.
Charge conjugated states are included. P(P=4,C=MAX) equals sqrt(Ebeam**2 - m(XI/C)**2). The kinematic limit is : (P(XI/C) / P(P=4,C=MAX)) < 0.5.
Charge conjugated states are included. P(P=4,C=MAX) equals sqrt(Ebeam**2 - m(XI/C)**2). The kinematic limit is : (P(XI/C) / P(P=4,C=MAX)) < 0.5.
A strong signal for double parton (DP) scattering is observed in a 16pb−1 sample of p¯p→γ/π0+3jets+X data from the CDF experiment at the Fermilab Tevatron. In DP events, two separate hard scatterings take place in a single p¯p collision. We isolate a large sample of data (∼14000events) of which 53% are found to be DP. The process-independent parameter of double parton scattering, σeff, is obtained without reference to theoretical calculations by comparing observed DP events to events with hard scatterings in separate p¯p collisions. The result σeff=(14.5±1.7−2.3+1.7)mb represents a significant improvement over previous measurements, and is used to constrain simple models of parton spatial density. The Feynman x dependence of σeff is investigated and none is apparent. Further, no evidence is found for kinematic correlations between the two scatterings in DP events.
The cross section for Double Parton scattering comprised of scatterings A and B is written: SIG(DP) = SIG(A)*SIG(B)/CONST(NAME=SIG-EFF). The value of the constant SIG-EFF is measured here.
We present evidence for dilepton events from t tbar production with one electron or muon and one hadronically decaying tau lepton from the decay t tbar -> (l nu_l) (tau nu_tau) b bbar, (l=e, mu), using the Collider Detector at Fermilab (CDF). In a 109 pb~-1 data sample of p pbar collisions at sqrt(s) = 1.8 TeV we expect 1 signal event and a total background of 2 events; we observe 4 candidate events (2 e tau and 2 mu tau). Three of these events have jets identified as b candidates, compared to an estimated background of 0.28+-0.02 events.
Two complementary techniques for identifying TAU's are used (see text), one'track-based' (C=TRCK) and other 'calorimeter-based' (C=CALO).
We describe the properties of six-jet events, with the six-jet mass exceeding 520GeV/c2, produced at the Fermilab proton-antiproton collider operating at a center-of-mass energy of 1.8 TeV. Observed distributions for a set of 20 multijet variables are compared with predictions from the HERWIG QCD parton shower Monte Carlo program, the NJETS leading order QCD matrix element Monte Carlo program, and a phase-space model in which six-jet events are distributed uniformly over the kinematically allowed region of the six-body phase space. In general the QCD predictions provide a good description of the observed six-jet distributions.
The 6Jet mass spectrum.
Dalitz X distribution for jet 3 in the reduced 3-JET final state.
Dalitz X distribution for jet 4 in the reduced 3-JET final state.
We report the observation and measurement of the rate of diffractive dijet production at the Fermilab Tevatron p¯p collider at s=1.8TeV. In events with two jets of ET>20GeV, 1.8<|η|<3.5, and η1η2>0, we find that the diffractive to nondiffractive production ratio is RJJ=[0.75±0.05(stat)±0.09(syst)]%. By comparing this result, in combination with our measured rate for diffractive W boson production reported previously, with predictions based on a hard partonic pomeron structure, we determine the pomeron gluon fraction to be fg=0.7±0.2.
No description provided.
We present the first observation of the all hadronic decay of tt¯ pairs. The analysis is performed using 109pb−1 of pp¯ collisions at s=1.8TeV collected with the Collider Detector at Fermilab. We observe an excess of events with five or more jets, including one or two b jets, relative to background expectations. Based on this excess we evaluate the production cross section to be in agreement with previous results. We measure the top mass to be 186±10±12GeV/c2.
The cross section is given in the paper at a TQ mass of 175 GeV. The values at TQ mass = (175 +- 10) GeV is evaluated as +20% and -12% as given in the paper. The statistical error has also been scaled.
The measured value of the top mass.