Using a quark-diquark fragmentation model, in which either the Field-Feynman or the Lund model is coupled with a quark-diquark distribution function, we study transverse momentum distributions,pT, for the inclusive reactionspp→hadron +anything at 360 GeV/c. We find that a primordial mean transverse momentum 〈kT〉≃0.4 GeV/c can well reproduce thepT2 distributions of charged hadrons, π0,Ks0, Λ0,K* and Σ* and the Feynmanx−pT correlations. We confirm that a diquark in a proton plays an important rôle in reproducing thex−pT correlation of Λ0.
No description provided.
The isoscalar nucleon structure functionsF2(x, Q2) andxF3(x, Q2) are measured in the range 0<Q2<64 GeV2, 1.7<W2<250 GeV2,x<0.7 using ν and\(\bar v\) interactions on neon in BEBC. The data are used to evaluate possible higher twist contributions and to determine their impact on the evaluation of the QCD parameter Λ. In contrast to previous analyses reaching to such lowW2 values, it is found that a low\(\Lambda _{\overline {MS} } \) value in the neighbourhood of 100 MeV describes the data adequately and that the contribution of dynamical higher twist effects is small and negative.
No description provided.
No description provided.
No description provided.
We present evidence for the exclusive reaction e+e−→Ds±Ds*∓, observed with the Mark III detector at the SLAC storage ring SPEAR. The Ds± is reconstructed in the φπ± decay mode, while the Ds*∓ is detected as a narrow peak in the recoil-mass distribution. The mass of the Ds* is found to be 2109.3±2.1±3.1 MeV/c2, yielding a Ds*−Ds mass difference of 137.9±2.1±4.3 MeV/c2. The width of the Ds* is <22 MeV/c2 at the 90%-confidence level. The observed signal corresponds to σ(e+e−→Ds+Ds*−+Ds−Ds*+)B(Ds+→φπ+)=30±6±11 pb at s=4.14 GeV.
No description provided.
Two high statistics measurements of antiproton-proton small-angle elastic scattering, at p = 233 MeV/ c and p = 272 MeV/ c , are presented. The measurements were carried out at the LEAR facility at CERN. By the Coulomb-nuclear interference method, values are obtained for the real-to-imaginary ratio ρ of the p̄p forward nuclear scattering amplitude and for its exponential slope b : ρ = + 0.041 ± 0.026 and b = 71.5 ± 4.5 (GeV/ c ) −2 at 233 MeV/ c and ρ = −0.014 ± 0.027 and b = 47.7 ± 2.7 (GeV/ c ) −2 at 272 MeV/ c . The method to derive these values is discussed in detail and so are the uncertainties contributing to their systematic error. The results are compared with predictions from forward dispersion relation calculations and with predictions from p̄p potential models.
The corrected cross section is the measured divided by the average folding correction given in the paper.
The corrected cross section is the measured divided by the average folding Correction given in the paper.
Fits to data use the value of total cross sections of 263 & 296 mb for 272 & 233 Mev respectively derived from the authors total cross sections measurement. ETA is the spin dependence parameter.
The e + e − → μ + μ − reaction has been studied at centre of mass energies ranging between 38.3 abd 46.8 GeV with the CELLO detector at PETRA. We present results on the cross section and the charge asymmetry for this channel. Combining all the data at the average energy 〈 s 〉=43 GeV we obtain R μμ =〈 σ μμ / σ 0 〉=0.98±0.04±0.04, 〈 A μμ 〉=(−14.1±3.7±1.0)%, where σ 0 is the QED cross section and A μμ is the charge asymmetry corrected for pure radiative effects. These results are in good agreement with the expected values of R μμ =1.01 and A μμ =−14.5% at that energy.
Mu-pair cross sections.
Corrected angular distributions with data sample divided into two energy regions with means 39 and 44 GeV and total energy region.
Forward-backward asymmetry.
We have measured the inclusive production properties of D and D messons produced from pp interactions at s =27.4 GeV . The differential production cross section is well represented by the empirical form d 2 σ d x F d P 2 T = 1 2 [σ ( D / D )(n+1)b](1−|x F |) n exp (−bp 2 T ) with n=4.9 ± 0.5, b=(1.0±0.1)( GeV /c) −2 , and the inclusive D / D cross section σ ( D / D ) is (30.2±3.3) ωb. The QCD fusion model predicts D / D production which is in good agreement with our data except for the magnitude of the cross section which depends sensitively on the assumed mass of the charm quark.
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
In a study of proton-proton interactions at\(\sqrt s= 26GeV\), inclusive distributions of single pions and systems of pions of various charge combinations are presented, as well as the production ratio obtained in association with various trigger particles. The results are compared to current phenomenological models in an attempt to understand multiparticle productions in hadron collisions.
.
The hadronic production of charmed states was studied in a two-arm spectrometer using a 205-GeV/c negative-pion beam incident upon a beryllium target. One arm, filled with dense absorber, triggered the detectors upon the passage of a muon with a moderate transverse momentum and a total momentum of at least 4 GeV/c. The other arm was an open-geometry magnetic spectrometer which had both neutral- and charged-particle identification capabilities. The apparatus, the data, and an invariant-mass-plot search for evidence of charmed-meson production through several charged-particle decay modes are described. The Kπ, Kππ, and Kπππ mass plots fail to reveal significant D-meson signals. Based upon the Kπ mass plots, the 95%-confidence upper limit on the DD¯ production cross section is found to be less than 51 μb per nucleon for the production models tested. A search for evidence of charged-D* production yields 30±16 combinations above background in association with the expected trigger muon charge. Interpreted as a D* signal, this excess corresponds to a model-dependent inclusive DD¯ production cross section of 34±18−9+14 μb per nucleon. Model-dependent upper limits on the ratio of the F to D cross sections are also presented.
Uncorrelated model for charmed mesons production.
'Correlated' model for pair of charmed mesons production.
Uncorrelated model for D/S+- mesons production.
The process γγ→π+π−π+π− has been investigated in reactions of the typee+e−→e+e−π+π−π+π− in the single tag mode. The range of the four momentum squared of one of the virtual photons was 0.28 GeV2/c2≦Q2≦3.6 GeV2/c2, the average being 〈Q2〉=0.92 GeV2/c2; the other photon was quasi real. The reaction is mainly described by the channels γγ→ρ0ρ0 and γγ→4π (phase space), occuring with about equal probability. TheQ2-dependence of the cross section is in agreement with the ρ form factor.
Data read from graph.. Additional overall systematic error 25%.
Data read from graph.. Additional overall systematic error 25%.. The Q**2 approx 0 datum is deduced from the earlier TASSO paper, Brandelik et al, Phys. Lett. 97B(1980)448, (<a href=http://durpdg.dur.ac.uk/scripts/reacsearch.csh/TESTREAC/red+1151> RED = 1151 </a>) on rho0 rho0 production.