A search for production of supersymmetric particles in final states containing jets, missing transverse momentum, and at least one hadronically decaying tau lepton is presented. The data were recorded by the ATLAS experiment in sqrt(s) = 7 TeV proton-proton collisions at the Large Hadron Collider. No excess above the Standard Model background expectation was observed in 2.05 fb-1 of data. The results are interpreted in the context of gauge mediated supersymmetry breaking models with Mmess = 250 TeV, N5 = 3, mu > 0, and Cgrav = 1. The production of supersymmetric particles is excluded at 95% C.L. up to a supersymmetry breaking scale Lambda = 30 Tev, independent of tan(beta), and up to Lambda = 43 TeV for large tan(beta).
Distribution of the missing transverse energy before final selection requirement on the effective mass. Tabulated are the observed Data events, the Standard Model predictions and the expected rates for two signal scenarios with Lambda=30TeV / tan(beta) = 20 and Lambda=40GeV / tan(beta)=30 respectively.
Distribution of the tau pt before final selection requirement on the effective mass. Tabulated are the observed Data events, the Standard Model predictions and the expected rates for two signal scenarios with Lambda=30TeV / tan(beta) = 20 and Lambda=40GeV / tan(beta)=30 respectively.
Distribution of the effective mass before final selection requirement on the effective mass. Tabulated are the observed Data events, the Standard Model predictions and the expected rates for two signal scenarios with Lambda=30TeV / tan(beta) = 20 and Lambda=40GeV / tan(beta)=30 respectively.
The results of a search for pair production of the lighter scalar partners of top quarks in 2.05 fb-1 of pp collisions at sqrt(s) =7 TeV using the ATLAS experiment at the LHC are reported. Scalar top quarks are searched for in events with two same flavour opposite-sign leptons (electrons or muons) with invariant mass consistent with the Z boson mass, large missing transverse momentum and jets in the final state. At least one of the jets is identified as originating from a b-quark. No excess over Standard Model expectations is found. The results are interpreted in the framework of R-parity conserving, gauge mediated Supersymmetry breaking `natural' scenarios, where the neutralino is the next-to-lightest supersymmetric particle. Scalar top quark masses up to 310 GeV are excluded for the lightest neutralino mass between 115 GeV and 230 GeV at 95% confidence level, reaching an exclusion of the scalar top quark mass of 330 GeV for the lightest neutralino mass of 190 GeV. Scalar top quark masses below 240 GeV are excluded for all values of the lightest neutralino mass above the Z boson mass.
The missing ET distribution from the combined EE and MUMU data for SR1. Tabulated are the observed Data rates and the Standard Model predictions as well as the distributions expected for two signal scenarios, both with an STOP mass of 250 GeV, and NEUTRALINO1 masses of 100 GeV and 220 GeV respectively.
The number of b-tagged jets for SR1 for the combined EE and MUMU channels. Tabulated are the observed Data rates and the Standard Model predictions as well as the distributions expected for two signal scenarios, both with an STOP mass of 250 GeV, and NEUTRALINO1 masses of 100 GeV and 220 GeV respectively.
The distrubution of leading jet pT for SR1 for the combined EE and MUMU channels. Tabulated are the observed Data rates and the Standard Model predictions as well as the distributions expected for two signal scenarios, both with an STOP mass of 250 GeV, and NEUTRALINO1 masses of 100 GeV and 220 GeV respectively. The last pT bin includes the number of overflow events for both data abd SM expectation.
A search for the weak production of charginos and neutralinos into final states with three electrons or muons and missing transverse momentum is presented. The analysis uses 2.06 fb^-1 of sqrt(s) = 7 TeV proton-proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with standard model expectations in two signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric and simplified models. For the simplified models, degenerate lightest chargino and next-to-lightest neutralino masses up to 300 GeV are excluded for mass differences from the lightest neutralino up to 300 GeV.
Transverse momentum distribution for the first leading lepton for events in the SR1 signal region for DATA and SM predictions.
Transverse momentum distribution for the first leading lepton for events in the SR2 signal region for DATA and SM predictions.
Transverse momentum distribution for the second leading lepton for events in the SR1 signal region for DATA and SM predictions.
Neutral-pion, pi^0, spectra were measured at midrapidity (|y|<0.35) in Au+Au collisions at sqrt(s_NN) = 39 and 62.4 GeV and compared to earlier measurements at 200 GeV in the 1<p_T<10 GeV/c transverse-momentum (p_T) range. The high-p_T tail is well described by a power law in all cases and the powers decrease significantly with decreasing center-of-mass energy. The change of powers is very similar to that observed in the corresponding p+p-collision spectra. The nuclear-modification factors (R_AA) show significant suppression and a distinct energy dependence at moderate p_T in central collisions. At high p_T, R_AA is similar for 62.4 and 200 GeV at all centralities. Perturbative-quantum-chromodynamics calculations that describe R_AA well at 200 GeV, fail to describe the 39 GeV data, raising the possibility that the relative importance of initial-state effects and soft processes increases at lower energies. A conclusion that the region where hard processes are dominant is reached only at higher p_T, is also supported by the x_T dependence of the x_T-scaling power-law exponent.
INVARIANT YIELDS
INVARIANT YIELDS
INVARIANT YIELDS
We report measurements of charmed-hadron ($D^{0}$, $D^{*}$) production cross sections at mid-rapidity in $p$ + $p$ collisions at a center-of-mass energy of 200 GeV by the STAR experiment. Charmed hadrons were reconstructed via the hadronic decays $D^{0}\rightarrow K^{-}\pi^{+}$, $D^{*+}\rightarrow D^{0}\pi^{+}\rightarrow K^{-}\pi^{+}\pi^{+}$ and their charge conjugates, covering the $p_T$ range of 0.6$-$2.0 GeV/$c$ and 2.0$-$6.0 GeV/$c$ for $D^{0}$ and $D^{*+}$, respectively. From this analysis, the charm-pair production cross section at mid-rapidity is $d\sigma/dy|_{y=0}^{c\bar{c}}$ = 170 $\pm$ 45 (stat.) $^{+38}_{-59}$ (sys.) $\mu$b. The extracted charm-pair cross section is compared to perturbative QCD calculations. The transverse momentum differential cross section is found to be consistent with the upper bound of a Fixed-Order Next-to-Leading Logarithm calculation.
$c\bar{c}$ production cross section as inferred from D$^0$ and D$^\star$ production in p+p collisions at $\sqrt{s} = 200$ GeV at $|\eta| < 1$ compared with FONLL calculations. The D$^0$ and D$^\star$ data points were divided by the charm quark fragmentation ratios 0.565 ($c \rightarrow$ D$^0$) and 0.224 ($c \rightarrow$ D$^{\star +}$) [34], respectively, to convert to the $c\bar{c}$ production cross section.
We report on mid-rapidity mass spectrum of di-electrons and cross sections of pseudoscalar and vector mesons via $e^{+}e^{-}$ decays, from $\sqrt{s} = 200$ GeV $p+p$ collisions, measured by the large acceptance experiment STAR at RHIC. The ratio of the di-electron continuum to the combinatorial background is larger than 10% over the entire mass range. Simulations of di-electrons from light-meson decays and heavy-flavor decays (charmonium and open charm correlation) are found to describe the data. The extracted $\omega\rightarrow e^{+}e^{-}$ invariant yields are consistent with previous measurements. The mid-rapidity yields ($dN/dy$) of $\phi$ and $J/\psi$ are extracted through their di-electron decay channels and are consistent with the previous measurements of $\phi\rightarrow K^{+}K^{-}$ and $J/\psi\rightarrow e^{+}e^{-}$. Our results suggest a new upper limit of the branching ratio of the $\eta \rightarrow e^{+}e^{-}$ of $1.7\times10^{-5}$ at 90% confidence level.
The electron-pair invariant mass distri- butions for unlike-sign pairs in minimum-bias p + p collisions.
The electron-pair invariant mass distributions for like-sign pairs in minimum-bias p + p collisions.
The electron-pair invariant mass distributions for mix-event pairs in minimum-bias p + p collisions.
We present measured J/psi production rates in d+Au collisions at sqrt(s_NN) = 200 GeV over a broad range of transverse momentum (p_T=0-14 GeV/c) and rapidity (-2.2<y<2.2). We construct the nuclear-modification factor R_dAu for these kinematics and as a function of collision centrality (related to impact parameter for the R_dAu collision). We find that the modification is largest for collisions with small impact parameters, and observe a suppression (R_dAu<1) for p_T<4 GeV/c at positive rapidities. At negative rapidity we observe a suppression for p_T<2 GeV/c then an enhancement (R_dAu>1) for p_T>2 GeV/c. The observed enhancement at negative rapidity has implications for the observed modification in heavy-ion collisions at high p_T.
$J/\psi$ invariant yield as a function of $p_T$ for $p+p$ and 0–100% centrality integrated $d$+Au collisions. The type C systematic uncertainty for each distribution is given as a percentage in the legend. Type A represents uncertainties that are uncorrelated from point to point, Type B represents uncertainties that are correlated from point to point, and Type C represents uncertainties in the overall normalization.
$J/\psi$ invariant yield as a function of $p_T$ for $p+p$ and 0–100% centrality integrated $d$+Au collisions. The type C systematic uncertainty for each distribution is given as a percentage in the legend. Type A represents uncertainties that are uncorrelated from point to point, Type B represents uncertainties that are correlated from point to point, and Type C represents uncertainties in the overall normalization.
$J/\psi$ invariant yield as a function of $p_T$ for $p+p$ and 0–100% centrality integrated $d$+Au collisions. The type C systematic uncertainty for each distribution is given as a percentage in the legend.Type A represents uncertainties that are uncorrelated from point to point, Type B represents uncertainties that are correlated from point to point, and Type C represents uncertainties in the overall normalization.
Recent studies have highlighted the potential of jet substructure techniques to identify the hadronic decays of boosted heavy particles. These studies all rely upon the assumption that the internal substructure of jets generated by QCD radiation is well understood. In this article, this assumption is tested on an inclusive sample of jets recorded with the ATLAS detector in 2010, which corresponds to 35 pb^-1 of pp collisions delivered by the LHC at sqrt(s) = 7 TeV. In a subsample of events with single pp collisions, measurementes corrected for detector efficiency and resolution are presented with full systematic uncertainties. Jet invariant mass, kt splitting scales and n-subjettiness variables are presented for anti-kt R = 1.0 jets and Cambridge-Aachen R = 1.2 jets. Jet invariant-mass spectra for Cambridge-Aachen R = 1.2 jets after a splitting and filtering procedure are also presented. Leading-order parton-shower Monte Carlo predictions for these variables are found to be broadly in agreement with data. The dependence of mean jet mass on additional pp interactions is also explored.
Normalised cross-section as a function of the mass of Cambridge-Aachen jets with R=1.2.
Normalised cross-section as a function of the mass of Cambridge-Aachen jets with R=1.2.
Normalised cross-section as a function of the mass of Cambridge-Aachen jets with R=1.2.
A measurement of the jet activity in ttbar events produced in proton-proton collisions at a centre-of-mass energy of 7 TeV is presented, using 2.05 fb^-1 of integrated luminosity collected by the ATLAS detector at the Large Hadron Collider. The ttbar events are selected in the dilepton decay channel with two identified b-jets from the top quark decays. Events are vetoed if they contain an additional jet with transverse momentum above a threshold in a central rapidity interval. The fraction of events surviving the jet veto is presented as a function of this threshold for four different central rapidity interval definitions. An alternate measurement is also performed, in which events are vetoed if the scalar transverse momentum sum of the additional jets in each rapidity interval is above a threshold. In both measurements, the data are corrected for detector effects and compared to the theoretical models implemented in MC@NLO, POWHEG, ALPGEN and SHERPA. The experimental uncertainties are often smaller than the spread of theoretical predictions, allowing deviations between data and theory to be observed in some regions of phase space.
The measured fraction of events, the gap fraction, surviving the veto cut of having no additional jets in the |rapidity| interval < 0.8 having a transverse momentum greater than Q, as a function of Q.
The measured fraction of events, the gap fraction, surviving the veto cut of having no additional jets in the |rapidity| interval 0.8-1.5 having a transverse momentum greater than Q, as a function of Q.
The measured fraction of events, the gap fraction, surviving the veto cut of having no additional jets in the |rapidity| interval 1.5-2.1 having a transverse momentum greater than Q, as a function of Q.
A measurement of the cross section for the production of an isolated photon in association with jets in proton-proton collisions at a center-of-mass energy $\sqrt{s}$ = 7 TeV is presented. Photons are reconstructed in the pseudorapidity range $|\eta^{\gamma}| \lt 1.37$ and with a transverse energy $E_T^\gamma$ > 25 GeV. Jets are reconstructed in the rapidity range $|y^{jet}|$ < 4.4 and with a transverse momentum $p_T^{jet}$ > 20 GeV. The differential cross section $d\sigma/dE_T^\gamma$ is measured, as a function of the photon transverse energy, for three different rapidity ranges of the leading-$p_T$ jet: $|y^{jet}| < 1.2, 1.2 \le |y^{jet}|$ < 2.8 and 2.8 $\le |y^{jet}|$ < 4.4. For each rapidity configuration the same-sign $(\eta^{\gamma}y^{jet}\ge 0)$ and opposite-sign $(\eta^{\gamma}y^{jet}<0)$ cases are studied separately. The results are based on an integrated luminosity of 37 pb$^{-1}$, collected with the ATLAS detector at the LHC. Next-to-leading order perturbative QCD calculations are found to be in fair agreement with the data, except for $E_T^{\gamma} \lt 45$ GeV, where the theoretical predictions overestimate the measured cross sections.
The measured cross section as a function of the photon transverse energy, ET, for pT(jet)>20 GeV, |eta(gamma)|<1.37, |y(jet)|<1.2, eta(gamma)*y(jet)>=0.
The measured cross section as a function of the photon transverse energy, ET, for pT(jet)>20 GeV, |eta(gamma)|<1.37, 1.2<=|y(jet)|<2.8, eta(gamma)*y(jet)>=0.
The measured cross section as a function of the photon transverse energy, ET, for pT(jet)>20 GeV, |eta(gamma)|<1.37, 2.8<=|y(jet)|<4.4, eta(gamma)*y(jet)>=0.