Experimental results for the cross-sections, the effectivemass distributions, the angular distributions and correlations are presented for the reaction\(\bar p\)p → 3π−3π+. All the multipion mass distributions and the ππ angular correlations are described in terms of a final-state interaction model including theδ00 andδ11 ππ phase shifts, as well as an A2 effect.
Antiproton-proton annihilations into final states containing one or two K10-mesons are studied on the basis of 450 000 pictures from the CERN 2 m HBC. The experiment covers the domain of antiproton incident momentum from 1.50 to 2.04 GeV/c. The resonance production rates are computed for the most abundant channels. The K10K10 threshold effect is explained through the inelastic channel π+π− → K10K10. The decay modes D, E → δ±(975)π∓, δ±(975) → K10K± are pointed out. The strange mesons C and C′ are observed in these annihilations and come mainly from the two-body channels \(p\bar p\) → (C, C′)K and\(p\bar p\) → (C, C′)K*.
We report results from a study of π−p→ω0n at 6.0 GeV/c based on 28 000 events from a charged and neutral spectrometer. Background under the ω0 is only 7%, a large improvement over deuterium-bubble-chamber work. Density matrix elements, projected cross sections, and effective trajectories for natural and unnatural exchanges are presented.
None
None
The ratio R of the differential cross sections for π - p→ η ′n and π - p → η n has been measured with high statistics and small systematic errors at 8.45 GeV/ c . R is generally interpreted as the relative content of nonstrange, ground-state quarks in η' and η. We find that R decreases with increasing ⋎ t ⋎; however, extrapolation to t =0 gives R (0) = 0.672 ± 0.032 (statistical) ± 0.47 (systematic) for the dominant spin flip cross sections, and R (0) = 0.500 ± 0.035 for the spin non-flip, in excellent agreement with results at higher energy. An improved value of the branching fraction ( η '→ γγ )/( η '→all) of 0.0200 ± 0.0018 is obtained.
Inclusive production of Λ0 hyperons by 300-GeV protons has been measured at fixed production angles in the laboratory between 0 and 9 mrad and laboratory momenta from 65 to 300 GeV/c. Three different solid targets were used: beryllium, copper, and lead. The A dependence of the data is suggestive of a collision model in which the hadron loses energy and gains transverse momentum as it leaves the nucleus. The experimental results are compared to such a model, and the implications are discussed.
We have measured the forward production spectra of various neutral particles produced by π−, K−, p¯, and p at 200 GeV/c, and by π− at 290 GeV/c incident on a Be target. The salient features of these measurements are (1) copious production of KSo at large Feynman xL for incident π− and K−, (2) production of roughly equal fluxes of Λ0 and Λ¯0 for incident π−, and (3) close similarity of the following spectra: π−→n and K−→Λ0; π−→Λ0, π−→Λ¯0, and p→KS0; π−→KS0 and p→Λ0. The overall features of the various distributions seem to agree with the ideas of dimensional counting presented in the constituent-interchange model of quark collisions. Results are presented in terms of the invariant cross section Ed3σ(xL, PT=0)dp3 per Be nucleus for each inclusive reaction.
We have measured the differential cross section for π−p→η0n at 6.0 GeV/c from 6730 very clean events in which the decay η→π+π−π0 was detected. The high statistics reveals a sizable forward turnover, implying a dominance of the helicity-flip amplitude. A precisely determined A2 trajectory, linear for |t|<1.0 (GeV/c)2, is found from combining our data with those at energies up to 101 GeV.
Data are presented from a high statistics bubble chamber experiment to study K − p interactions in the c.m. energy range 1775 to 1957 MeV. For the reactions K − p → K − p, K − p → K 0 n , K − p → Λπ 0 and K − p → Σ ± π ∓ channel cross sections, differential cross sections and, where appropriate, polarisation distributions have been obtained. The channel cross sections for K − p → Σ 0 π 0 are presented. In general the results are in agreement with those previously published although a significant discrepancy has been found in the Σ ± π ∓ cross sections at the lower energies. New measurements of the Σ ± lifetimes have also been obtained ( τ Σ − = 1.49 ± 0.03 × 10 −10 sec, τ Σ + = 0.807 ± 0.013 × 10 −10 sec).