Date

Subject_areas

Observation of Planar Three Jet Events in e+ e- Annihilation and Evidence for Gluon Bremsstrahlung

The JADE collaboration Bartel, W. ; Canzler, T. ; Cords, D. ; et al.
Phys.Lett.B 91 (1980) 142-147, 1980.
Inspire Record 143985 DOI 10.17182/hepdata.6339

Topological distributions of charged and neutral hadrons from the reaction e + e − → multihadrons are studied at √ s of about 30 GeV. An excess of planar events is observed at a rate which cannot be explained by statistical fluctuations in the standard two-jet process. The planar events, mostly consisting of a slim jet on one side and a broader jet on the other, are shown actually to possess three-jet structure by demonstrating that the broader jet itself consists of two collinear jets in its own rest system. Detailed agreement between data and predictions is obtained if the process e + e − →q q ̄ g is taken into account. This strongly suggests gluon bremsstrahlung as the origin of the planar three-jet events. By comparison of the data with the qq̄g-model we obtain a value for the strong coupling constant of α S ( q 2 = 0.17 ± 0.04.

2 data tables

THRUST AND PLANARITY DISTRIBUTIONS. FINAL (BETTER) THRUST DISTRIBUTIONS WITH DETECTOR CORRECTIONS TO BE PUBLISHED LATER.

No description provided.


Tests of Quantum Chromodynamics and a Direct Measurement of the Strong Coupling Constant $\alpha_S$ at $\sqrt{s}=30$-{GeV}

Barber, D.P. ; Becker, U. ; Benda, H. ; et al.
Phys.Lett.B 89 (1979) 139-144, 1979.
Inspire Record 143680 DOI 10.17182/hepdata.6483

We report the measurement of the reaction e + + e − → hadronic jets at a center-of-mass energy √ s =30 GeV using the MARK-J detector at PETRA. By measuring the energy and angular distribution of both neutrals and charged particles we were able to isolate unambiguously the three-jet events in a kinematic region where the backgrounds from q q and phase space contributions and other processes are small. Various comparisons of the data with quantum chromodynamics were made. The relative yield of three-jet events and the shape distribution of the events enable us to determine α s = 0.23 ± 0.02 (statistical error) with a systematic error of ± 0.04.

2 data tables

OBLATENESS AND THRUST DISTRIBUTIONS FOR NARROW AND BROAD JETS AT 30 GEV. THESE DATA ARE SOMEWHAT ANALYSIS AND DETECTOR DEPENDENT.

No description provided.


Study of Electron - Positron Collisions at the Highest {PETRA} Energy

The Aachen-DESY-Annecy(LAPP)-MIT-NIKHEF-Beijing collaboration Barber, D.P. ; Becker, U. ; Benda, H. ; et al.
Phys.Lett.B 85 (1979) 463-466, 1979.
Inspire Record 141976 DOI 10.17182/hepdata.27332

We report on the results of the study of e + e − collisions at the highest PETRA energy of √ s = 31.57 GeV, using the 4π sr, electromagnetic and calorimetric detector Mark J. Based on 88 hadron events, and an integrated luminosity of 243 nb −1 we obtain R = σ (e + e − → hadrons)/ σ (e + e − → μ + μ − ) = 4.0 ± 0.5 (statistical) ± 6 (systematic). The R value, the measured thrust distribution and average spherocity show no evidence for the production of new quark flavors.

2 data tables

CORRECTIONS FOR TWO-PHOTON PROCESSES, TAU HEAVY LEPTON PRODUCTION AND INITIAL STATE RADIATIVE CORRECTIONS HAVE BEEN APPLIED.

THRUST DISTRIBUTION (1/N)*DN/DTHRUST AT 31.57 GEV. THESE DATA ARE RATHER DETECTOR DEPENDENT.


Study of Electron - Positron Collisions at the Center-of-mass Energies of 27.4-{GeV} and 27.7-{GeV} at {PETRA}

Barber, D.P. ; Becker, U. ; Benda, H. ; et al.
Phys.Rev.Lett. 43 (1979) 901, 1979.
Inspire Record 141542 DOI 10.17182/hepdata.20739

This paper reports on the first results of the study of e+e− collisions at s=27.4 GeV and s=27.7 GeV at PETRA, using the 4π-sr electromagnetic and calorimetric detector MARK-J. We obtain an average R=σ(e+e−→hadrons)σ(e+e−→μ+μ−)=3.8±0.3 (statistical)±0.6 (systematic) and a relative R=1.0±0.2 between the two energies. The R values, the measured thrust distribution, and average spherocity show no evidence for the production of new quark flavors.

2 data tables

THE RELATIVE VALUE OF R BETWEEN THESE TWO ENERGIES IS 1.0 +- 0.2.

THRUST DISTRIBUTION (1/N)*DN/DTHRUST AT 13, 17 AND 27 GEV. THESE DATA ARE RATHER DETECTOR DEPENDENT.