The total charm-quark production cross section per unit of rapidity $\mathrm{d}\sigma({\rm c\overline{c}})/\mathrm{d}y$, and the fragmentation fractions of charm quarks to different charm-hadron species $f(\mathrm{c}\rightarrow {\rm h_{c}})$, are measured for the first time in p$-$Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV at midrapidity ($-0.96<y<0.04$ in the centre-of-mass frame) using data collected by ALICE at the CERN LHC. The results are obtained based on all the available measurements of prompt production of ground-state charm-hadron species: $\mathrm{D}^{0}$, $\mathrm{D}^{+}$, $\mathrm{D}_\mathrm{s}^{+}$, and $\mathrm{J/\psi}$ mesons, and $\Lambda_\mathrm{c}^{+}$ and $\Xi_{\rm c}^{0}$ baryons. The resulting cross section is $\mathrm{d}\sigma({\rm c\overline{c}})/\mathrm{d}y =219.6 \pm 6.3\;(\mathrm{stat.}) {\;}_{-11.8}^{+10.5}\;(\mathrm{syst.}) {\;}_{-2.9}^{+8.3}\;(\mathrm{extr.})\pm 5.4\;(\mathrm{BR})\pm 4.6\;(\mathrm{lumi.}) \pm 19.5\;(\text{rapidity shape})+15.0\;(\Omega_{\rm c}^{0})$ mb, which is consistent with a binary scaling of pQCD calculations from pp collisions. The measured fragmentation fractions are compatible with those measured in pp collisions at $\sqrt{s} = 5.02$ and $13$ TeV, showing an increase in the relative production rates of charm baryons with respect to charm mesons in pp and p$-$Pb collisions compared with $\mathrm{e^{+}e^{-}}$ and $\mathrm{e^{-}p}$ collisions. The $p_\mathrm{T}$-integrated nuclear modification factor of charm quarks, $R_\mathrm{pPb}({\rm c\overline{c}})= 0.91 \pm 0.04\;{\rm (stat.)}{}^{+0.08}_{-0.09}\;{\rm (syst.)}{}^{+0.05}_{-0.03}\;{\rm (extr.)}{}\pm 0.03\;{\rm (lumi.)}$, is found to be consistent with unity and with theoretical predictions including nuclear modifications of the parton distribution functions.
The $p_\mathrm{T}$-integrated rapidity-differential cross sections for all measured charm-hadron species at midrapidity in p-Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV.
The fragmentation fractions $f(\mathrm{c}\rightarrow\mathrm{h}_{\mathrm{c}})$ of charm hadrons in p-Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV.
The total $\mathrm{c\overline{c}}$ production cross section at midrapidity in p-Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV.
The transverse momentum ($p_{\rm T}$) differential production cross section of the promptly produced charm-strange baryon $\Xi_{\rm c}^{0}$ (and its charge conjugate $\overline{\Xi_{\rm c}^{0}}$) is measured at midrapidity via its hadronic decay into ${\rm \pi^{+}}\Xi^{-}$ in p$-$Pb collisions at a centre-of-mass energy per nucleon$-$nucleon collision $\sqrt{s_{\mathrm{NN}}}~=~5.02$ TeV with the ALICE detector at the LHC. The $\Xi_{\rm c}^{0}$ nuclear modification factor ($R_{\rm pPb}$), calculated from the cross sections in pp and p$-$Pb collisions, is presented and compared with the $R_{\rm pPb}$ of $\Lambda_{\rm c}^{+}$ baryons. The ratios between the $p_{\rm T}$-differential production cross section of $\Xi_{\rm c}^{0}$ baryons and those of $\mathrm {D^0}$ mesons and $\Lambda_{\rm c}^{+}$ baryons are also reported and compared with results at forward and backward rapidity from the LHCb Collaboration. The measurements of the production cross section of prompt $\Xi^0_{\rm c}$ baryons are compared with a model based on perturbative QCD calculations of charm-quark production cross sections, which includes only cold nuclear matter effects in p$-$Pb collisions, and underestimates the measurement by a factor of about 50. This discrepancy is reduced when the data is compared with a model that includes string formation beyond leading-colour approximation or in which hadronisation is implemented via quark coalescence. The $p_{\rm T}$-integrated cross section of prompt $\Xi^0_{\rm c}$-baryon production at midrapidity extrapolated down to $p_{\rm T}$ = 0 is also reported. These measurements offer insights and constraints for theoretical calculations of the hadronisation process. Additionally, they provide inputs for the calculation of the charm production cross section in p$-$Pb collisions at midrapidity.
Prompt $\Xi_\mathrm{c}^0$ productions cross-section as a function of $p_\mathrm{T}$ in p–Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV.
$\Xi_\mathrm{c}^0~R_\mathrm{pPb}$ as a function of $p_\mathrm{T}$ in p–Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV.
$\Xi_\mathrm{c}^0/\mathrm{D}^0$ ratio as a function of $p_\mathrm{T}$ in p–Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV.
Production of inclusive charmonia in pp collisions at center-of-mass energy of $\sqrt{s}$ = 13 TeV and p-Pb collisions at center-of-mass energy per nucleon pair of $\sqrt{s_{\rm NN}}$ = 8.16 TeV is studied as a function of charged-particle pseudorapidity density with ALICE. Ground and excited charmonium states (J/$\psi$, $\psi$(2S)) are measured from their dimuon decays in the interval of rapidity in the center-of-mass frame $2.5 < y_{\rm cms} < 4.0$ for pp collisions, and $2.03 < y_{\rm cms} < 3.53$ and $-4.46 < y_{\rm cms} < -2.96$ for p-Pb collisions. The charged-particle pseudorapidity density is measured around midrapidity ($|\eta|<1.0$). In pp collisions, the measured charged-particle multiplicity extends to about six times the average value, while in p-Pb collisions at forward (backward) rapidity a multiplicity corresponding to about three (four) times the average is reached. The $\psi$(2S) yield increases with the charged-particle pseudorapidity density. The ratio of $\psi$(2S) over J/$\psi$ yield does not show a significant multiplicity dependence in either colliding system, suggesting a similar behavior of J/$\psi$ and $\psi$(2S) yields with respect to charged-particle pseudorapidity density. Results for the $\psi$(2S) yield and its ratio with respect to J/$\psi$ agree with available model calculations.
Ratio of measured PSI(2S) cross section in charged-particle multiplicity intervals and integrated in multiplicity.
Ratio of measured PSI(2S) cross section in charged-particle multiplicity intervals and integrated in multiplicity.
Ratio of measured PSI(2S) cross section in charged-particle multiplicity intervals and integrated in multiplicity.
The PHENIX experiment at the Relativistic Heavy Ion Collider has measured low mass vector meson, $\omega$, $\rho$, and $\phi$, production through the dimuon decay channel at forward rapidity ($1.2<|y|<2.2$) in $p$$+$$p$ collisions at $\sqrt{s}=200$ GeV. The differential cross sections for these mesons are measured as a function of both $p_T$ and rapidity. We also report the integrated differential cross sections over $1<p_T<7$ GeV/$c$ and $1.2<|y|<2.2$: $d\sigma/dy(\omega+\rho\rightarrow\mu\mu) = 80 \pm 6 \mbox{(stat)} \pm 12 \mbox{(syst)}$ nb and $d\sigma/dy(\phi\rightarrow\mu\mu) = 27 \pm 3 \mbox{(stat)} \pm 4 \mbox{(syst)}$ nb. These results are compared with midrapidity measurements and calculations.
Differential cross sections of (OMEGA + RHO) and PHI as functions of PT. The statistical uncertainty includes the type-A systematic uncertainty. The systematic uncertainty is the type-B systematic uncertainty.
Differential cross sections of (OMEGA + RHO) and PHI as functions of rapidity. The statistical uncertainty includes the type-A systematic uncertainty. The systematic uncertainty is the type-B systematic uncertainty.
N(PHI) / ( N(OMEGA) + N(RHO) ) as a function of PT. The statistical uncertainty includes the type-A systematic uncertainty. The systematic uncertainty is the type-B systematic uncertainty.
Measurements of neutral current cross sections for deep inelastic scattering in e+p collisions at HERA with a longitudinally polarised positron beam are presented. The single-differential cross-sections d(sigma)/dQ2, d(sigma)/dx and d(sigma)/dy and the reduced cross-section were measured in the kinematic region Q2 > 185 GeV2 and y < 0.9, where Q2 is the four-momentum transfer squared, x the Bjorken scaling variable, and y the inelasticity of the interaction. The measurements were performed separately for positively and negatively polarised positron beams. The measurements are based on an integrated luminosity of 135.5 pb-1 collected with the ZEUS detector in 2006 and 2007 at a centre-of-mass energy of 318 GeV. The structure functions F3 and F3(gamma)Z were determined by combining the e+p results presented in this paper with previously published e-p neutral current results. The asymmetry parameter A+ is used to demonstrate the parity violation predicted in electroweak interactions. The measurements are well described by the predictions of the Standard Model.
The single-differential cross section DSIG/DQ**2 (Y<0.9,Y(1-x)**2>0.004), corrected to the electroweak Born level, for zero polarisation, Pe=0.
The single-differential cross section DSIG/DQ**2 (Y<0.9,Y(1-x)**2>0.004), corrected to the electroweak Born level, for positive (Pe=+0.32) and negative (Pe=-0.36) polarisations.
The single-differential cross section DSIG/DX (Y<0.9,Y(1-x)**2>0.004) at Q^2=185 GeV^2, corrected to the electroweak Born level, for zero (Pe=0), positive (Pe=+0.32) and negative (Pe=-0.36) polarisations.
Measurements of the cross sections for charged current deep inelastic scattering in e-p collisions with longitudinally polarised electron beams are presented. The measurements are based on a data sample with an integrated luminosity of 175 pb-1 collected with the ZEUS detector at HERA at a centre-of-mass energy of 318 GeV. The total cross section is given for positively and negatively polarised electron beams. The differential cross-sections dsigma/dQ2, dsigma/dx and dsigma/dy are presented for Q2>200 GeV2. The double-differential cross-section d2sigma/dxdQ2 is presented in the kinematic range 280<Q2<30000 GeV2 and 0.015<x<0.65. The measured cross sections are compared with the predictions of the Standard Model.
Total cross section for CC DIS events for two values of the longitudinal polarization of the electron beam.
Total cross section for CC DIS events as a function of the longitudinal polarization of the electron beam.
Differential cross section DSIG/DQ**2 for the two values of longitudinal polarization of the electron beam.
Three- and four-jet final states have been measured in photoproduction at HERA using the ZEUS detector with an integrated luminosity of 121 pb^-1. The results are presented for jets with transverse energy E_T^jet>6 GeV and pseudorapidity |eta^jet|<2.4, in the kinematic region given by the virtuality of the photon Q^2<1 GeV^2 and the inelasticity 0.2<y<0.85 and in two mass regions defined as 25<M_nj<50 GeV and M_nj>50 GeV, where M_nj is the invariant mass of the n-jet system. The four-jet photoproduction cross section has been measured for the first time and represents the highest-order process studied at HERA. Both the three- and four-jet cross sections have been compared with leading-logarithmic parton-shower Monte Carlo models, with and without multi-parton interactions. The three-jet cross sections have been compared to an order(alpha alpha_s^2) perturbative QCD calculation.
Cross section D(SIG)/M(P=4_5_6) as a function of M(P=4_5_6) .
Cross section D(SIG)/M(P=4_5_6_7) as a function of M(P=4_5_6_7) .
Cross section D(SIG)/X(C=GAMMA,OBS) as a function of X(C=GAMMA,OBS) in two jet invariant mass regions, 25 to 50 and > 50 GeV .
The production of D*+-(2010) mesons in ep scattering in the range of exchanged photon virtuality 0.05 < Q^2 < 0.7 GeV^2 has been measured with the ZEUS detector at HERA using an integrated luminosity of 82 pb-1. The decay channels D*+ -> D0 pi+ with D0 -> K- pi+ and corresponding antiparticle decay were used to identify D* mesons and the ZEUS beampipe calorimeter was used to identify the scattered electron. Differential D* cross sections as functions of Q^2, inelasticity, y, transverse momentum of the D* meson, p_T(D*), and pseudorapidity of the D* meson, eta(D*), have been measured in the kinematic region 0.02 < y < 0.85, 1.5 < p_T(D*) < 9.0 GeV and |eta(D*)| < 1.5. The measured differential cross sections are in agreement with two different NLO QCD calculations. The cross sections are also compared to previous ZEUS measurements in the photoproduction and DIS regimes.
Total cross section measurement.. The second DSYS error is due to the uncertainty in the branching ratio.
Measured differential cross section as a function of Q**2.
Measured differential cross section as a function of Y.
The cross sections for charged and neutral current deep inelastic scattering in e^+p collisions with a longitudinally polarised positron beam have been measured using the ZEUS detector at HERA. The results, based on data corresponding to an integrated luminosity of 23.8 pb^-1 at sqrt(s) = 318 GeV, are given for both e^+p charged current and neutral current deep inelastic scattering for both positive and negative values of the longitudinal polarisation of the positron beam. Single differential cross sections are presented for the kinematic region Q^2 > 200 GeV^2 . The measured cross sections are compared to the predictions of the Standard Model. A fit to the data yields sigma^CC (P_e = -1) = 7.4 +/- 3.9 (stat.) +/- 1.2 (syst.) pb, which is consistent within two standard deviations with the absence of right-handed charged currents in the Standard Model.
Total cross sections for the E+ P CC DIS at Q**2 > 200 GeV for the two different longitudinal positron polarizations and extrapolated with a linear fit to a polarization of -1.0 (including earlier unpolarized data).
E+ P CC DIS cross section as a function of Q**2.
E+ P CC DIS cross section as a function of X.
Cross sections for e^+p neutral current deep inelastic scattering have been measured at a centre-of-mass energy of sqrt{s}=318 GeV with the ZEUS detector at HERA using an integrated luminosity of 63.2 pb^-1. The double-differential cross section, d^2sigma/dxdQ^2, is presented for 200 GeV^2 < Q^2 < 30000 GeV^2 and for 0.005 < x < 0.65. The single-differential cross-sections dsigma/dQ^2, dsigma/dx and dsigma/dy are presented for Q^2 > 200 GeV^2. The effect of Z-boson exchange is seen in dsigma/dx measured for Q^2 > 10000 GeV^2. The data presented here were combined with ZEUS e^+p neutral current data taken at sqrt{s}=300 GeV and the structure function F_2^{em} was extracted. All results agree well with the predictions of the Standard Model.
The single differential DSIG/DQ**2 cross section corrected to the electroweak Born level. See next table for a breakdown of the systematic errors.
Systematic errors with bin to bin correlations for the cross section DSIG/DQ**2.
Single differential cross section DSIG/DX for a Q**2 cut of 200 GeV**2 corrected to the electroweak Born level.