Inclusive production cross sections of $\pi^\pm$, $K^\pm$ and $p\bar{p}$ per hadronic $e^+e^-$ annihilation event in $e^+e^-$ are measured at a center-of-mass energy of 10.54 GeV, using a relatively small sample of very high quality data from the BaBar experiment at the PEP-II $B$-factory at the SLAC National Accelerator Laboratory. The drift chamber and Cherenkov detector provide clean samples of identified $\pi^\pm$, $K^\pm$ and $p\bar{p}$ over a wide range of momenta. Since the center-of-mass energy is below the threshold to produce a $B\bar{B}$ pair, with $B$ a bottom-quark meson, these data represent a pure $e^+e^- \rightarrow q\bar{q}$ sample with four quark flavors, and are used to test QCD predictions and hadronization models. Combined with measurements at other energies, in particular at the $Z^0$ resonance, they also provide precise constraints on the scaling properties of the hadronization process over a wide energy range.
Differential cross section for prompt PI+-, K+- and PBAR/P production.
Differential cross section for conventional PI+-, K+- and PBAR/P production.
Integrated cross sections for prompt PI+-, K+- and PBAR/P production. The second (sys) error is the uncertainty due to the model dependence of the extrapolation.
Measurements of inclusive differential cross sections for charged pion and kaon production in electron-positron annihilation have been carried out at a center-of-mass energy of Q = 10.52 GeV. The measurements were performed with the Belle detector at the KEKB electron-positron collider using a data sample containing 113 million e+e- -> qqbar events, where q={u,d,s,c}. We present charge-integrated differential cross sections d\sigma_h+-/dz for h+- = pi+-, K+- as a function of the relative hadron energy z = 2*E_h / sqrt{s} from 0.2 to 0.98. The combined statistical and systematic uncertainties for pi+- (K+-) are 4% (4%) at z ~ 0.6 and 15% (24%) at z ~ 0.9. The cross sections are the first measurements of the z-dependence of pion and kaon production for z > 0.7 as well as the first precision cross section measurements at a center-of-mass energy far below the Z^0 resonance used by the experiments at LEP and SLC.
Measured charged-integrated differential cross sections for charged pion and kaon production as a function of the fractional hadron energy Z (=2*Eh/sqrt(s)).
Inclusive distributions of charged particles in hadronic W decays are experimentally investigated using the statistics collected by the DELPHI experiment at LEP during 1997, 1998 and 1999, at centre-of-mass energies from 183 to around 200 GeV. The possible effects of interconnection between the hadronic decays of two Ws are not observed. Measurements of the average multiplicity for charged and identified particles in q qbar and WW events at centre-of-mass energies from 130 to 200 GeV and in W decays are presented. The results on the average multiplicity of identified particles and on the position xi^* of the maximum of the xi_p = -log(2p/sqrt(s)) distribution are compared with predictions of JETSET and MLLA calculations.
Corrected multiplicites and dispersions of charged particles produced in hadronic decays from QQBAR events. The 200 GeV results are a weighted average fromthe 192, 196 and 200 GeV data.
Average multiplicities of identified hadrons produced in hadronic decays from QQBAR events.
Corrected multiplicites and dispersions of charged particles produced in fully hadronic W decays from two W 4Q and 2Q events.
The DELPHI experiment at LEP uses Ring Imaging Cherenkov detectors for particle identification. The good understanding of the RICH detectors allows the identification of charged pions, kaons and proto
Mean particle multiplicities for Z0-->Q-QBAR events. The second systematic (DSYS) error is due to the extrapolation of the differential distributions to the full kinematic range.
Mean particle multiplicities for Z0-->B-BBAR events. The second systematic (DSYS) error is due to the extrapolation of the differential distributions to the full kinematic range.
Mean particle multiplicities for Z0-->(U-UBAR,D-DBAR,S-SBAR) events. The second systematic (DSYS) error is due to the extrapolation of the differential distributions to the full kinematic range.
We have measured the differential production cross sections as a function of scaled momentum x_p=2p/E_cm of the identified hadron species pi+, K+, K0, K*0, phi, p, Lambda0, and of the corresponding antihadron species in inclusive hadronic Z0 decays, as well as separately for Z0 decays into light (u, d, s), c and b flavors. Clear flavor dependences are observed, consistent with expectations based upon previously measured production and decay properties of heavy hadrons. These results were used to test the QCD predictions of Gribov and Lipatov, the predictions of QCD in the Modified Leading Logarithm Approximation with the ansatz of Local Parton-Hadron Duality, and the predictions of three fragmentation models. Ratios of production of different hadron species were also measured as a function of x_p and were used to study the suppression of strange meson, strange and non-strange baryon, and vector meson production in the jet fragmentation process. The light-flavor results provide improved tests of the above predictions, as they remove the contribution of heavy hadron production and decay from that of the rest of the fragmentation process. In addition we have compared hadron and antihadron production as a function of x_p in light quark (as opposed to antiquark) jets. Differences are observed at high x_p, providing direct evidence that higher-momentum hadrons are more likely to contain a primary quark or antiquark. The differences for pseudoscalar and vector kaons provide new measurements of strangeness suppression for high-x_p fragmentation products.
Charged pion fraction and differential cross section per hadron Z0 decay. The last line in the table is the integral over the full X range of the measurement.. There is an additional 1.7 PCT normalization error (included in the integral).
Charged kaon fraction and differential cross section per hadron Z0 decay. The last line in the table is the integral over the full X range of the measurement.. There is an additional 1.7 PCT normalization error (included in the integral).
Proton fraction and differential cross section per hadron Z0 decay. The last line in the table is the integral over the full X range of the measurement.. There is an additional 1.7 PCT normalization error (included in the integral).
Previously published and as yet unpublished QCD results obtained with the ALEPH detector at LEP1 are presented. The unprecedented statistics allows detailed studies of both perturbative and non-perturbative aspects of strong interactions to be carried out using hadronic Z and tau decays. The studies presented include precise determinations of the strong coupling constant, tests of its flavour independence, tests of the SU(3) gauge structure of QCD, study of coherence effects, and measurements of single-particle inclusive distributions and two-particle correlations for many identified baryons and mesons.
Charged particle sphericity distribution.
Charged particle aplanarity distribution.
Charged particle Thrust distribution.
Event shape and charged particle inclusive distributions are measured using 750000 decays of the Z to hadrons from the DELPHI detector at LEP. These precise data allow a decisive confrontation with models of the hadronization process. Improved tunings of the JETSET, ARIADNE and HERWIG parton shower models and the JETSET matrix element model are obtained by fitting the models to these DELPHI data as well as to identified particle distributions from all LEP experiments. The description of the data distributions by the models is critically reviewed with special importance attributed to identified particles.
Transverse momentum PTIN w.r.t. the Thrust axis. For the first table Thrust axis definition is from seen charged particles corrected to final state particles. For the second table Thrust axis definition is from seen charged plus neutral particles corrected to final state charged plus neutral particles.
Transverse momentum PTOUT w.r.t. the Thrust axis. For the first table Thrust axis definition is from seen charged particles corrected to final state particles. For the second table Thrust axis definition is from seen charged plus neutral particles corrected to final state charged plus neutral particles.
Transverse momentum PTIN w.r.t. the Sphericity axis. For the first table Sphericity axis definition is from seen charged particles corrected to final state particles. For the second table Sphericity axis definition is from seen charged plus neutral particles corrected to final state charged plus neutral particles.
Inclusive momentum spectra are measured for all charged particles and for each of $\pi~{\pm}$, $K~{\pm}$, $K~0/\overline{K~0}$, and $p/\overline{p}$ in hadronic events produced via $e~+e~-$ annihilation at $\sqrt{s}$=58GeV . The measured spectra are compared with QCD predictions based on the modified leading log approximation(MLLA). The MLLA model reproduces the measured spectra well. The energy dependence of the peak positions of the spectra is studied by comparing the measurements with those at other energies. The energy dependence is also well described by the MLLA model.
Errors include both statistical and systematic errors.
Errors include both statistical and systematic errors.
Statistical errors only.
Inclusive π±, K± and\((p,\bar p)\) differential cross-sections in hadronic decays of the Z have been measured as a function ofz=Phadron/Pbeam, the scaled momentum. The results are based on approximately 520 000 events measured by the ALEPH detector at LEP during 1992. Charged particles are identified by their rate of ionization energy loss in the ALEPH Time Projection Chamber. The position, ξ*, of the peak in the ln(1/z) distribution is determined, and the evolution of the peak position with centre-of-mass energy is compared with the prediction of QCD.
No description provided.
No description provided.
No description provided.
The inclusive production of π± andK± mesons and of protons and antiprotons ine+e− annihilations has been measured at 34 GeV and 44 G
No description provided.
No description provided.
No description provided.