The reaction K − n → K − π + π − n has been studied in the SLAC 82″ liquid deuterium bubble chamber with a beam momentum of 12 GeV/ c . Although the kinematic fit for this final state has only one constraint, nonetheless a reasonably pure sample has been obtained. The cross section for the reaction is 1.02 ± 0.10 mb. The process K − n → K ∗0 890 Δ − is observed with cross section 36 ± 9 μ b and t -slope of 10 ± 2 (GeV/ c ) −2 . A kaon diffraction dissociation sample has been obtained, although the Q-signal is not so strong as in experiments with proton targets. Neutron dissociation into n π + π − is also observed with similar properties to those of proton dissociation into p π + π − , but with a broader t -distribution.
We have measured the total cross-section difference for pp scattering in initial spin states parallel to the beam direction at beam momenta of 1.17, 1.47, 1.69, 1.97 and 2.49 GeV/ c . This measurement was done in a standard transmission experiment. A striking energy dependence is observed with a maximum difference of −16.9 mb at P lab = 1.47 GeV/ c .
The reactions K L o p→K S o p, π + Λ , π + Σ o have been measured for center-of-mass energies from 1540 to 1610 MeV. Channel cross sections and coefficients of the Legendre polynomial expansion of the differential cross sections and hyperon polarizations are presented. We see no evidence in the πΛ channel for the suggested 3 2 − resonance at 1580 MeV. The cross section for the K S o p channel shows an energy dependence which is not predicted by the existing phase shift solutions based on charged kaon data.
Differential and channel cross sections and hyperon polarizations are presented for the reactions K L o p → K S o p, π + Λ o , and π + Σ o at an average beam momentum of 550 MeV/ c . These data provide constraints on KN and K N amplitudes obtained from charged kaon reactions and reject one of the S = +1, I = 0 and one of the S = -1, I = 1 phase shift solutions.
The K L o p → K S o p differential and total cross-section and the forward scattering amplitude phase φ have been measured in the 1.5 to 2.3 GeV centre of mass energy range. The data is compared with predictions based on recent K ± N phase shift solutions. Best agreement is found for K + N solutions which do not warrant an I=0 P 1 2 exotic Z ∗ o (1800) baryon.
We have measured the total and differential cross-sections for coherently photoproduced ϱ, ω and ϱ′ on deuterium at 7.5 GeV. Using VDM relations, we have obtained γ ω 2 / γ ϱ 2 = 7.1 ± 1.5, σ T ( ϱ d) = (54 ± 2) mb and σ T ( ω d) = (56 ± 5) mb. Assuming the amplitude for ϱ′ production via an intermediate ϱ 0 to be small and that the amplitudes for ϱp and ϱ′p elastic scattering are comparable, we found γ ϱ ′ 2 / γ ϱ 2 = 6.0 ± 1.2 and σ T ( ϱ ′d) = (47 ± 6) mb.
We have measured the difference between the pp total cross-sections for parallel and anti-parallel longitudinal spin states at beam momenta of 3 and 6 GeV/ c . These results, combined with our previous measurements, at lower momenta, are useful in clarifying a striking structure appearing at around 1.5 GeV/ c . We have also measured for the first time, the spin-spin correlation parameter C LL ( t ) in pp elastic scattering at 6 GeV/ c . We observe evidence for an exchange with A 1 -like quantum-numbers.
The production of φ mesions is studied in the reaction π+p→π+p K+K− and π+→π+p K0K¯0 at 3.75 GeV/c. A large isotropic component is seen in the production angular distribution for the reaction π+p→π+pφ. The cross sections for the φπ+p and φΔ++ final states are compared with the cross sections for ωπ+p and ωΔ++ at the same momentum.
We have studied the reactions K − p → K − π + π − p and K − p → K 0 π − π 0 p at 14.3 GeV/ c using respectively 15 992 and 3723 events. Partial-wave analysis of the region 1.0 < m (K ππ ) < 1.7 GeV have been made using a modified version of the method developed at the University of Illinois.
We present results for the differential cross sections of neutrinos and antineutrinos on nucleons in the energy range E = 2−200 GeV, from the BEBC and Gargamelle experiments. The structure functions F 2 , 2 χF 1 and χF 3 have been evaluated as a function of χ and q 2 . Deviations are observed from Bjorken scaling, which are very similar to those found in electron and muon inelastic scattering. For the Callan-Gross ratio, we find 2χF 1 F 2 = 0.80 ± 0.12 and the corresponding value for 〈R〉 = 〈 σ S σ T 〉 = 0.15 ± 0.10 . Our results are consistent with the Gross-Llewellyn-Smith sum rule; we measure ⩾2.5 ± 0.5 valence quarks per nucleon. Quark and antiquark distributions are given. The Nachtmann moments of F 2 and χF 3 are quantitatively consistent with the predictions from QCD. The value of the strong interaction parameter is λ = 0.74 ± 0.05 GeV without corrections, and 0.66 ± 0.05 GeV including α S 2 corrections. The moments of the gluon distribution are found to be positive and indicate an χ distribution of gluons which is comparable with that of the valence quarks.