Momenta of charged particles produced in inelastic αα, αp, andpp collisions were measured using the Split-Field-Magnet detector at the CERN Intersecting Storage Rings. Inclusive and semi-in-clusive spectra are presented as a function of rapidityy, Feynman-x, and transverse momentumpT. The inclusivey distributions agree well with predictions of the dual parton model; the highest particle densities are reached aty≃0 and the momenta of leading protons decrease significantly for increasing total multiplicity. ‘Temperatures’ are equal in αα, αp, andpp interactions. ThepT distributions depend weakly on the multiplicity.
No description provided.
No description provided.
No description provided.
We present measurements of the αα elastic scattering differential cross section at √ s = 126 GeV in the range 0.05 ⩽ ‖ t ‖
ERRORS ARE STATISTICAL ONLY.
EXPONENTIAL FIT TO CROSS SECTION BELOW T = 0.075 GEV**2.
OPTICAL THEOREM CALCULATION OF THE TOTAL CROSS SECTION ASSUMING RHO IS ZERO.
None
Backward Multiplicity.
Forward Multiplicity.
No description provided.
A high-statistics measurement is presented of the cross section for the process e+e−→τ+τ− at s=29 GeV from the MAC detector at PEP. A fit to the angular distribution of our sample of 10 153 events with |cosθ|<0.9 gives an asymmetry Aττ=−0.055±0.012±0.005 from which we find the product of electron and tau axial-vector weak neutral couplings gAegAτ=0.22±0.05.
Data fully corrected up to O(ALPHA**3) radiative effects. Data requested from authors.
Data extrapolated to full acceptance.
No description provided.
Using the ARGUS detector at DORIS, we have observed the production of F ± mesons in e + e − annihilation at a centre of mass energy of 10 GeV through their subsequent decays into φπ ± and φπ + π − π ± . The values obtained for [ R (e + e − →FX). Branching Ratio] are (1.47 ± 0.32 ± 0.20)% and (1.63 ± 0.42 ± 0.41)% respectively. The observed mass is (1973.6 ± 2.6 ± 3.0) MeV c 2 . The F momentum spectrum is as expected for the fragmentation of c quarks into charmed mesons, but is somewhat softer than for fragmentation into D ∗ mesons. The relevant angular distributions are consistent with a spin-zero assignment of the F meson.
RESULTS OF FITS FOR SPECIFIED DECAY CHANNELS.
ACCEPTANCE CORRECTED FRAGMENTATION FUNCTION FOR THE TWO DECAY CHANNELS COMBINED. X IS PF/PMAX. DATA HAVE BEEN READ FROM THE GRAPH.
None
No description provided.
DATA WERE EXTRACTED FROM ADEUT-BREAKUP EVENTS,SEE R=PR D10, 3573 FOR EXAMPLE.
We have measured the K0+K¯ 0 inclusive cross section in e+e− annihilation at 29 GeV with the Mark II detector SLAC PEP. We find 1.27±0.03±0.15 K0+K¯ 0 per hadronic event. We have also used time-of-flight particle identification to measure the K± rate over the momentum range 300–900 MeV/c.
Extrapolated to full momentum range by Monte-Carlo.
Statistical errors only.
No description provided.
We have measured the process e+e−→μ+μ− at √s =29 GeV using the High Resolution Spectrometer at SLAC PEP. The forward-backward charge asymmetry is Aμμ=-(4.9±1.5±0.5)% based on 5057 events. A subsample of 3488 μ+μ− events in the angular range ‖cosθ‖<0.55 gives a cross-section ratio of Rμμ=0.990±0.017±0.030. The resulting couplings of the weak neutral current are gaegaμ=0.208±0.064± 0.021 and gvegvμ=0.027 ±0.051±0.089. The QED cutoff parameters are Λ+>170 GeV and Λ−>146 GeV at 95% C.L.
Corrected for acceptance and O(alpha**3) QED radiation. Numerical values taken from SUGANO-ANL-HEP-CP-84-90.
Forward-backward asymmetry based on fit to angular distribution. Result is given combined with earlier data from BENDER et al.
No description provided.
None
No description provided.
No description provided.
No description provided.
Secondary beams of 3 He, 4 He, 6 He, and 8 He were produced through the projectile fragmentation of an 800 MeV/nucleon 11 B primary beam. Interaction cross sections ( σ I ) of all He isotopes of 790 MeV/nucleon on Be, C, and Al targets were measured by a transmission-type experiment. The interaction nuclear radii of He isotopes R I ( He ) = ( σ I π ) 1 2 − R I ( T ) where R I ( T ) is the radius of the target nucleus, have been deduced to be R I ( 3 He ) = 1.59 ± 0.06 fm , R I ( 4 He ) = 1.40 ± 0.05 fm , R I ( 6 He ) = 2.21 ± 0.06 fm , and R I ( 8 He ) = 2.52 ± 0.06 fm .
No description provided.