While dual-phase xenon time projection chambers (TPCs) have driven the sensitivity towards weakly interacting massive particles (WIMPs) at the GeV/c^2 to TeV/c^2 mass scale, the scope for sub-GeV/c^2 dark matter particles is hindered by a limited nuclear recoil energy detection threshold. One approach to probe for lighter candidates is to consider cases where they have been boosted by collisions with cosmic rays in the Milky Way, such that the additional kinetic energy lifts their induced signatures above the nominal threshold. In this Letter, we report first results of a search for cosmic ray-boosted dark matter (CRDM) with a combined 4.2 tonne-year exposure from the LUX-ZEPLIN (LZ) experiment. We observe no excess above the expected backgrounds and establish world-leading constraints on the spin-independent CRDM-nucleon cross section as small as 3.9 * 10^{-33} cm^2 at 90% confidence level for sub-GeV/c^2 masses.
90% CL CRDM-nucleon cross sections
Partonic collectivity is one of the necessary signatures for the formation of Quark-Gluon-Plasma in high-energy nuclear collisions. Number of Constituent Quarks (NCQ) scaling has been observed for light hadron elliptic flow $v_2$ in top energy nuclear collisions at RHIC and the LHC, and this has been theoretically suggested as strong evidence for partonic collectivity. In this letter, a systematic analysis of $v_2$ of $\pi^{\pm}$, $K^{\pm}$, $K^{0}_{S}$, $p$ and $\Lambda$ in Au+Au collisions at ${\sqrt{s_{_{\rm{NN}}}}}$ = 3.2, 3.5, 3.9, and 4.5 GeV, with the STAR experiment at RHIC, is presented. NCQ scaling is markedly violated at 3.2 GeV, consistent with a hadronic-interaction dominated equation of state. However, as the collision energy increases, a gradual evolution to NCQ scaling is observed. This beam-energy dependence of $v_2$ for all hadrons studied provides evidence for the onset of dominant partonic interactions by ${\sqrt{s_{_{\rm{NN}}}}}$ = 4.5 GeV.
$p_{T}$ dependence of $v_{2}$ for $\pi^{+}$ in Au+Au collisions at 3 GeV
$p_{T}$ dependence of $v_{2}$ for $\pi^{+}$ in Au+Au collisions at 3.2 GeV
$p_{T}$ dependence of $v_{2}$ for $\pi^{+}$ in Au+Au collisions at 3.5 GeV
The STAR Collaboration reports precise measurements of the longitudinal double-spin asymmetry, $A_{LL}$, for dijet production with at least one jet at intermediate pseudorapidity $0.8 < η_{\rm jet} < 1.8$ in polarized proton-proton collisions at a center-of-mass energy of 200 GeV. This study explores partons scattered with a longitudinal momentum fraction ($x$) from 0.01 to 0.5, which are predominantly characterized by interactions between high-$x$ valence quarks and low-$x$ gluons. The results are in good agreement with previous measurements at 200 GeV with improved precision and are found to be consistent with the predictions of global analyses that find the gluon polarization to be positive. In contrast, the negative gluon polarization solution from the JAM Collaboration is found to be strongly disfavored.
$A_{LL}$ as a function of parton-level invariant mass for dijets with the East barrel-endcap.
$A_{LL}$ as a function of parton-level invariant mass for dijets with the West barrel-endcap.
$A_{LL}$ as a function of parton-level invariant mass for dijets with the endcap-endcap.
We report results of a search for nuclear recoils induced by weakly interacting massive particle (WIMP) dark matter using the LUX-ZEPLIN (LZ) two-phase xenon time projection chamber. This analysis uses a total exposure of $4.2\pm0.1$ tonne-years from 280 live days of LZ operation, of which $3.3\pm0.1$ tonne-years and 220 live days are new. A technique to actively tag background electronic recoils from $^{214}$Pb $β$ decays is featured for the first time. Enhanced electron-ion recombination is observed in two-neutrino double electron capture decays of $^{124}$Xe, representing a noteworthy new background. After removal of artificial signal-like events injected into the data set to mitigate analyzer bias, we find no evidence for an excess over expected backgrounds. World-leading constraints are placed on spin-independent (SI) and spin-dependent WIMP-nucleon cross sections for masses $\geq$9 GeV/$c^2$. The strongest SI exclusion set is $2.2\times10^{-48}$ cm$^{2}$ at the 90% confidence level and the best SI median sensitivity achieved is $5.1\times10^{-48}$ cm$^{2}$, both for a mass of 40 GeV/$c^2$.
90% CL WIMP SI cross sections, including sensitivities
90% CL WIMP SI cross sections, including sensitivities
90% CL WIMP SDn cross sections, including sensitivities and nuclear structure uncertainties
We report the measurements of proton-deuteron ($p$-$d$) and deuteron-deuteron ($d$-$d$) correlation functions in Au+Au collisions at $\sqrt{s_\mathrm{NN}}$ = 3 GeV using fixed-target mode with the STAR experiment at the Relativistic Heavy-Ion Collider (RHIC). For the first time, the source size ($R_{G}$), scattering length ($f_{0}$), and effective range ($d_{0}$) are extracted from the measured correlation functions with a simultaneous fit. The spin-averaged $f_0$ for $p$-$d$ and $d$-$d$ interactions are determined to be -5.28 $\pm$ 0.11(stat.) $\pm$ 0.82(syst.) fm and -2.62 $\pm$ 0.02(stat.) $\pm$ 0.24(syst.) fm, respectively. The measured $p$-$d$ interaction is consistent with theoretical calculations and low-energy scattering experiment results, demonstrating the feasibility of extracting interaction parameters using the femtoscopy technique. The reasonable agreement between the experimental data and the calculations from the transport model indicates that deuteron production in these collisions is primarily governed by nucleon coalescence.
Proton-Deuteron correlation function in 3 GeV Au+Au collisions.
Deuteron-Deuteron correlation function in 3 GeV Au+Au collisions.
Source size of p-d and d-d correlation function
We report the differential yields at mid-rapidity of the Breit-Wheeler process ($\gamma\gamma\rightarrow e^{+}e^{-}$) in peripheral Au+Au collisions at $\sqrt{s_{_{\rm{NN}}}} = $ 54.4 GeV and 200 GeV with the STAR experiment at RHIC, as a function of energy $\sqrt{s_{_{\rm{NN}}}}$, $e^{+}e^{-}$ transverse momentum $p_{\rm T}$, $p_{\rm T}^{2}$, invariant mass $M_{ee}$ and azimuthal angle. In the invariant mass range of 0.4 $<$$M_{ee}$$<$ 2.6 GeV/$c^{2}$ at low transverse momentum ($p_{\rm T}$$ < $0.15 GeV/$c$), the yields increase while the pair $\sqrt{\langle p_{\rm T}^{2} \rangle}$ decreases with increasing $\sqrt{s_{_{\rm{NN}}}}$, a feature is correctly predicted by the QED calculation. The energy dependencies of the measured quantities are sensitive to the nuclear form factor, infrared divergence and photon polarization. The data are compiled and used to extract the charge radius of the Au nucleus.
'54.4 GeV, Centrality: 40-60%'
'54.4 GeV, Centrality: 60-80%'
'54.4 GeV, Centrality: 80-100%'
We report multi-differential measurements of strange hadron production ranging from mid- to target-rapidity in Au+Au collisions at a center-of-momentum energy per nucleon pair of $\sqrt{s_{\rm NN}}=3$ GeV with the STAR experiment at RHIC. $K^0_S$ meson and $\Lambda$ hyperon yields are measured via their weak decay channels. Collision centrality and rapidity dependences of the transverse momentum spectra and particle ratios are presented. Particle mass and centrality dependence of the average transverse momenta of $\Lambda$ and $K^0_S$ are compared with other strange particles, providing evidence of the development of hadronic rescattering in such collisions. The 4$\pi$ yields of each of these strange hadrons show a consistent centrality dependence. Discussions on radial flow, the strange hadron production mechanism, and properties of the medium created in such collisions are presented together with results from hadronic transport and thermal model calculations.
dN/dy of lambda for different centrality bins.
dN/dy of Ks0 for different centrality bins.
Rapidity dependence of Lambda/p for different centrality bins.
In heavy-ion collision experiments, the global collectivity of final-state particles can be quantified by anisotropic flow coefficients ($v_n$). The first-order flow coefficient, also referred to as the directed flow ($v_{1}$), describes the collective sideward motion of produced particles and nuclear fragments in heavy-ion collisions. It carries information on the very early stage of the collision, especially at large pseudorapidity ($\eta$), where it is believed to be generated during the nuclear passage time. Directed flow therefore probes the onset of bulk collective dynamics during thermalization, providing valuable experimental guidance to models of the pre-equilibrium stage. In 2018, the Event Plane Detector (EPD) was installed in STAR and used for the Beam Energy Scan phase-II (BES-II) data taking. The combination of EPD ($2.1 <|\eta|< 5.1$) and high-statistics BES-II data enables us to extend the $v_{1}$ measurement to the forward and backward $\eta$ regions. In this paper, we present the measurement of $v_{1}$ over a wide $\eta$ range in Au+Au collisions at $\sqrt{s_{NN}}=$ 19.6 and 27 GeV using the STAR EPD. The results of the analysis at $\sqrt{s_{NN}}=$19.6 GeV exhibit excellent consistency with the previous PHOBOS measurement, while elevating the precision of the overall measurement. The increased precision of the measurement also revealed finer structures in heavy-ion collisions, including a potential observation of the first-order event-plane decorrelation. Multiple physics models were compared to the experimental results. Only a transport model and a three-fluid hybrid model can reproduce a sizable $v_{1}$ at large $\eta$ as was observed experimentally. The model comparison also indicates $v_{1}$ at large $\eta$ might be sensitive to the QGP phase transition.
Directed flow vs pseudorapidity.
Directed flow vs pseudorapidity.
Directed flow vs pseudorapidity.
Weakly interacting massive particles (WIMPs) may interact with a virtual pion that is exchanged between nucleons. This interaction channel is important to consider in models where the spin-independent isoscalar channel is suppressed. Using data from the first science run of the LUX-ZEPLIN dark matter experiment, containing 60 live days of data in a 5.5~tonne fiducial mass of liquid xenon, we report the results on a search for WIMP-pion interactions. We observe no significant excess and set an upper limit of $1.5\times10^{-46}$~cm$^2$ at a 90% confidence level for a WIMP mass of 33~GeV/c$^2$ for this interaction.
WIMP-Pion interaction cross section at the 90% CL
The first science run of the LUX-ZEPLIN (LZ) experiment, a dual-phase xenon time project chamber operating in the Sanford Underground Research Facility in South Dakota, USA, has reported leading limits on spin-independent WIMP-nucleon interactions and interactions described from a non-relativistic effective field theory (NREFT). Using the same 5.5~t fiducial mass and 60 live days of exposure we report on the results of a relativistic extension to the NREFT. We present constraints on couplings from covariant interactions arising from the coupling of vector, axial currents, and electric dipole moments of the nucleon to the magnetic and electric dipole moments of the WIMP which cannot be described by recasting previous results described by an NREFT. Using a profile-likelihood ratio analysis, in an energy region between 0~keV$_\text{nr}$ to 270~keV$_\text{nr}$, we report 90% confidence level exclusion limits on the coupling strength of five interactions in both the isoscalar and isovector bases.
Isoscalar interaction coupling limit for Lagrangian 1
Isovector interaction coupling limit for Lagrangian 19
Isoscalar interaction coupling limit for Lagrangian 19