An analysis of π−p two-prong interactions at 4.16 GeV/c is presented. The total two-prong cross section is 19.11±0.40 mb, based on 33 672 events. The elastic-scattering differential cross section shows an exponential behavior, Kexp(−AΔ2). With A=7.36±0.14 GeV−2, the "absorption parameters" are derived as C+=0.846±0.017 and γ+=0.040±0.001. The final-state π−π0p exhibits a strong ρ−, and the π−π+n a strong ρ0 and f0. The partial cross sections for the dominant resonant channels pρ−, π−Δ+(1236) (→pπ0), ρ0n, and f0n are 0.59±0.03, 0.17±0.01, 1.15±0.05, and 0.53±0.06 mb, respectively. The ρ− production and decay angular distributions do not agree with the predictions of the absorption-modified one-pion-exchange model. However, an inclusion of the contribution from ω exchange adequately accounts for the discrepancy. The ρ0 asymmetry is interpreted as a result of an interference of the resonant P wave and isospin-zero S wave, and the corresponding spin-density matrix elements are obtained. In the final state π−p+neutrals, a clear peak for the η meson and some evidence for the ω meson are seen.
Axis error includes +- 0.0/0.0 contribution (?////EVENT NORMALIZATION).
A sample of 2657 proton-proton scattering events at 1.48 BeV has been analyzed. The elastic cross section is 19.86 mb, and the elastic scattering is consistent with a simple opaque-disk optical model with R=0.91 F and 1−a=0.864. The dominant feature of the inelastic scattering is the production of the (3/2, 3/2) isobar. The reaction p+p→p+n+π+ is interpreted satisfactorily in terms of the one-pion-exchange model.
No description provided.
No description provided.
The slope b(s) of the forward diffraction peak of p−p elastic scattering has been measured in the momentum-transfer-squared range 0.005≲|t|≲0.09 (GeV/c)2 and at incident proton energies from 8 to 400 GeV. We find that b(s) increases with s, and in the interval 100≲s≲750 (GeV)2 it can be fitted by the form b(s)=b0+2α′lns with b0=8.23±0.27, α′=0.278±0.024 (GeV/c)−2.
MOMENTUM BINS ARE APPROX 20 GEV WIDE CENTRED AT THE GIVEN PLAB EXCEPT FOR THE 9 AND 12 GEV POINTS WHICH HAVE WIDTHS OF APPROX 1 AND 4 GEV RESPECTIVELY.
From measurements of proton-proton elastic scattering at very small momentum transfers where the nuclear and Coulomb amplitudes interfere, we have deduced values of ρ, the ratio of the real to the imaginary forward nuclear amplitude, for energies from 50 to 400 GeV. We find that ρ increases from -0.157 ± 0.012 at 51.5 GeV to +0.039 ± 0.012 at 393 GeV, crossing zero at 280 ± 60 GeV.
No description provided.
None
THE ERRORS INCLUDE THE UNCERTAINTIES IN THE FIT PARAMETERS SLOPE AND SIG, WHILE THE PURELY STATISTICAL ERRORS ARE ALSO GIVEN.
The first result of the pp2pp experiment at RHIC on elastic scattering of polarized protons at sqrt{s} = 200 GeV is reported here. The exponential slope parameter b of the diffractive peak of the elastic cross section in the t range 0.010 <= |t| <= 0.019 (GeV/c)^2 was measured to be b = 16.3 +- 1.6 (stat.) +- 0.9 (syst.) (GeV/c)^{-2} .
Measured slope of the elastic cross section.
In a sample of 108 563 pictures taken with the Fermilab 30-inch hydrogen bubble chamber, exposed to a 360-GeV/c π− beam, we have observed 19 453 interactions in a selected fiducial region. The observed charged multiplicity distribution has been corrected for the effects of scan efficiency, errors in prong count, missed close-in vees, secondary interactions, and neutron stars and for Dalitz pairs. The two-prong events have been corrected for losses at low −t. The total cross section is measured to be 25.25 ± 0.35 mb, and the elastic cross section is 3.61 ± 0.11 mb with an exponential slope of (8.82 ± 0.30) (GeV/c)−2. The average charged-particle multiplicity for inelastic events is 8.73 ± 0.04, and the second moment f2 is measured to be 9.83 ± 0.23.
SYSTEMATIC CORRECTIONS INCLUDED IN ERRORS.
FROM FIT, FORWARD D(SIG)/DT = 31.84 +- 0.68 MB/GEV**2, AND AGREES WITH OPTICAL POINT FROM MEASURED TOTAL CROSS SECTIONS.
We report on the first measurement of the single spin analyzing power (A_N) at sqrt(s)=200GeV, obtained by the pp2pp experiment using polarized proton beams at the Relativistic Heavy Ion Collider (RHIC). Data points were measured in the four momentum transfer t range 0.01 < |t| < 0.03 (GeV/c)^2. Our result, averaged over the whole t-interval is about one standard deviation above the calculation, which uses interference between electromagnetic spin-flip amplitude and hadronic non-flip amplitude, the source of A_N. The difference could be explained by an additional contribution of a hadronic spin-flip amplitude to A_N.
The single spin analyzing power for 3 T intervals.
The analyzing power in 28 GeV/c proton/proton elastic scattering was measured at P2∥=5.95 and 6.56 (GeV/c)2 using a polarized proton target and an unpolarized proton beam at the Brookhaven National Laboratory AGS. Results indicate that the analyzing power, A, is rising sharply with P2∥.
No description provided.
Using the new Brookhaven Alternating Gradient Synchrotron polarized proton beam and our polarized proton target, we measured the spin-spin correlation parameter Ann in 16.5-GeV/c proton-proton elastic scattering. We found an Ann of (6.1±3.0)% at P⊥2=2.2 (GeV/c)2. We also measured the analyzing power A in two independent ways, providing a good test of possible experimental errors. Comparing our new data with 12-GeV Argonne Zero Gradient Synchrotron data shows no evidence for strong energy dependence in Ann in this medium-P⊥2 region.
ERROR CONTAINS BOTH SYSTEMATIC AND STATISTICAL UNCERTAINTY.