The single-pion production reactions $pp\to d\pi^+$, $pp\to np\pi^+$ and $pp\to pp\pi^0$ were measured at a beam momentum of 0.95 GeV/c ($T_p \approx$ 400 MeV) using the short version of the COSY-TOF spectrometer. The implementation of a central calorimeter provided particle identification, energy determination and neutron detection in addition to time-of-flight and angle measurements. Thus all pion production channels were recorded with 1-4 overconstraints. The total and differential cross sections obtained are compared to previous data and theoretical calculations. Main emphasis is put on the discussion of the $pp\pi^0$ channel, where we obtain angular distributions different from previous experimental results, however, partly in good agreement with recent phenomenological and theoretical predictions. In particular we observe very large anisotropies for the $\pi^0$ angular distributions in the kinematical region of small relative proton momenta revealing there a dominance of proton spinflip transitions associated with $\pi^0$ $s$- and $d$-partial waves and emphasizing the important role of $\pi^0$ d-waves.
The cross section for the production of $\omega$ mesons in proton-proton collisions has been measured in a previously unexplored region of incident energies. Cross sections were extracted at 92 MeV and 173 MeV excess energy, respectively. The angular distribution of the $\omega$ at $\epsilon$=173 MeV is strongly anisotropic, demonstrating the importance of partial waves beyond pure s-wave production at this energy.
Measured cross sections for omega production.
The single-pion production reactions $pp\to d\pi^+$, $pp\to np\pi^+$ and $pp\to pp\pi^0$ were measured at a beam momentum of 0.95 GeV/c ($T_p \approx$ 400 MeV) using the short version of the COSY-TOF spectrometer. The central calorimeter provided particle identification, energy determination and neutron detection in addition to time-of-flight and angle measurements from other detector parts. Thus all pion production channels were recorded with 1-4 overconstraints. Main emphasis is put on the presentation and discussion of the $np\pi^+$ channel, since the results on the other channels have already been published previously. The total and differential cross sections obtained are compared to theoretical calculations. In contrast to the $pp\pi^0$ channel we find in the $np\pi^+$ channel a strong influence of the $\Delta$ excitation already at this energy close to threshold. In particular we find a $(3 cos^2\Theta + 1)$ dependence in the pion angular distribution, typical for a pure s-channel $\Delta$ excitation and identical to that observed in the $d\pi^+$ channel. Since the latter is understood by a s-channel resonance in the $^1D_2$ $pn$ partial wave, we discuss an analogous scenario for the $pn\pi^+$ channel.
Data accumulated recently for the exclusive measurement of the $pp\to pp\pi^+\pi^-$ reaction at a beam energy of 0.793 GeV using the COSY-TOF spectrometer have been analyzed with respect to possible events from the $pp \to nn\pi^+\pi^+$ reaction channel. The latter is expected to be the only $\pi\pi$ production channel, which contains no major contributions from resonance excitation close to threshold and hence should be a good testing ground for chiral dynamics in the $\pi\pi$ production process. No single event has been found, which meets all conditions for being a candidate for the $pp \to nn \pi^+\pi^+$ reaction. This gives an upper limit for the cross section of 0.16 $\mu$b (90% C.L.), which is more than an order of magnitude smaller than the cross sections of the other two-pion production channels at the same incident energy.
Hyperon production in the threshold region was studied in the reaction pp→K+Λp using the time-of-flight spectrometer COSY-TOF. Exclusive data, covering the full phase-space, were taken at three different beam momenta pbeam=2.59 , 2.68 and 2.85 GeV/ c (corresponding to excess energies of ɛ=85 , 115 and 171 MeV). Total cross-sections were deduced to be 7.4±0.5 μb , 8.6±0.6 μb and 16.5±0.4 μb , respectively. Differential observables including Dalitz plots were obtained. From the investigation of the Dalitz plot at pbeam=2.85 GeV/c a dominant contribution of the N∗(1650) -resonance to the reaction mechanism was found. In addition the pΛ -final-state interaction turned out to have a significant influence on the Dalitz plot distribution even 171 MeV above threshold.
Measured total cross sections.
Distribution of the invariant mass of the P-LAMBDA subsystem at beam momentum 2.85 GeV.
Distribution of the invariant mass of the K-LAMBDA subsystem at beam momentum 2.85 GeV.
A search for new long-lived particles decaying to leptons is presented using proton-proton collisions produced by the LHC at sqrt(s) = 8 TeV. Data used for the analysis were collected by the CMS detector and correspond to an integrated luminosity of 19.7 inverse femtobarns. Events are selected with an electron and a muon that have transverse impact parameter values between 0.02 cm and 2 cm. The search has been designed to be sensitive to a wide range of models with nonprompt e-mu final states. Limits are set on the "displaced supersymmetry" model, with pair production of top squarks decaying into an e-mu final state via R-parity-violating interactions. The results are the most restrictive to date on this model, with the most stringent limit being obtained for a top squark lifetime corresponding to c tau = 2 cm, excluding masses below 790 GeV at 95% confidence level.
Numbers of expected and observed events in the three search regions (see the text for the definitions of these regions). Background and signal expectations are quoted as $N_{\text{exp}} \pm 1\sigma$ stat $\pm 1\sigma$ syst. If the estimated background is zero in a particular search region, the estimate is instead taken from the preceding region. Since this should always overestimate the background, we denote this by a preceding "<".
Expected and observed 95% CL cross section exclusion contours for top squark pair production in the plane of top squark lifetime ($c\tau$) and top squark mass. These limits assume a branching fraction of 100\% through the RPV vertex $\tilde{t}$ $\to$ b l, where the branching fraction to any lepton flavor is equal to 1/3. As indicated in the plot, the region to the left of the contours is excluded by this search.
Electron reconstruction efficiency as function of its tranverse impact parameter, $d_0$.
The reaction pp -> pp eta was measured at excess energies of 15 and 41 MeV at an external target of the Juelich Cooler Synchrotron COSY with the Time of Flight Spectrometer. About 25000 events were measured for the excess energy of 15 MeV and about 8000 for 41 MeV. Both protons of the process pp eta were detected with an acceptance of nearly 100% and the eta was reconstructed by the missing mass technique. For both excess energies the angular distributions are found to be nearly isotropic. In the invariant mass distributions strong deviations from the pure phase space distributions are seen.
Angular distribution of the ETA in the CM frame.
Angular distribution of the P P momentum in the CM frame.
Squared P P invariant mass distribution.
The reaction $ pp\to pp\bf \omega$ was investigated with the TOF spectrometer, which is an external experiment at the accelerator COSY (Forschungszentrum Julich, Germany). Total as well as differential cross sections were determined at an excess energy of $93 MeV$ ($p_{beam}=2950 MeV/c$). Using the total cross section of $(9.0\pm 0.7 \pm1.1) \mu b$ for the reaction $ pp\to pp\omega$ determined here and existing data for the reaction $pp\to pp\bf \phi$, the ratio $\mathcal{R}_{\phi/\omega}=\sigma_\phi/\sigma_\omega$ turns out to be significantly larger than expected by the Okubo-Zweig-Iizuka (OZI) rule. The uncertainty of this ratio is considerably smaller than in previous determinations. The differential distributions show that the $\omega$ production is still dominated by S-wave production at this excess energy, however higher partial waves clearly contribute. A comparison of the measured angular distributions for $\omega$ production to published distributions for $\phi$ production at $83 MeV$ shows that the data are consistent with an identical production mechanism for both vector mesons.
A search for flavour-changing neutral current (FCNC) events via the coupling of a top quark, a photon, and an up or charm quark is presented using 81 fb$^{-1}$ of proton-proton collision data taken at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC. Events with a photon, an electron or muon, a $b$-tagged jet, and missing transverse momentum are selected. A neural network based on kinematic variables differentiates between events from signal and background processes. The data are consistent with the background-only hypothesis, and limits are set on the strength of the $tq\gamma$ coupling in an effective field theory. These are also interpreted as 95% CL upper limits on the cross section for FCNC $t\gamma$ production via a left-handed (right-handed) $tu\gamma$ coupling of 36 fb (78 fb) and on the branching ratio for $t\rightarrow \gamma u$ of $2.8\times 10^{-5}$ ($6.1\times 10^{-5}$). In addition, they are interpreted as 95% CL upper limits on the cross section for FCNC $t\gamma$ production via a left-handed (right-handed) $tc\gamma$ coupling of 40 fb (33 fb) and on the branching ratio for $t\rightarrow \gamma c$ of $22\times 10^{-5}$ ($18\times 10^{-5}$).
Post-fit distributions of a background-only fit to the signal region (SR) and the control regions (CRs) of the NN output in the SR. In addition, the expected signal is overlaid for an effective coupling strength corresponding to the observed limit multiplied by a factor of ten.
Observed (expected) 95 % CL limits on the effective coupling strengths for different vertices and couplings, the production cross section, and the branching ratio. For the former, the energy scale is assumed to be $\Lambda$ = 1 TeV.
Post-fit distributions of a background-only fit to the SR and the CRs of the NN output in the SR for the $tu\gamma$ right-handed coupling. In addition, the expected signal is overlaid for an effective coupling strength corresponding to the observed limit multiplied by a factor of ten.
Several models of physics beyond the Standard Model predict neutral particles that decay into final states consisting of collimated jets of light leptons and hadrons (so-called "lepton jets"). These particles can also be long-lived with decay length comparable to, or even larger than, the LHC detectors' linear dimensions. This paper presents the results of a search for lepton jets in proton--proton collisions at the centre-of-mass energy of $\sqrt{s}$ = 8 TeV in a sample of 20.3 fb$^{-1}$ collected during 2012 with the ATLAS detector at the LHC. Limits on models predicting Higgs boson decays to neutral long-lived lepton jets are derived as a function of the particle's proper decay length.
Reconstruction efficiency of TYPE2 LJs as a function of the $p_{\mathrm{T}}$ of the $s_{d_{1}}$ for LJs with two $\gamma_{d}$'s for an \scalar mass of 2 GeV. For the $\gamma_{d}$, the kinematically allowed mass of 0.15 GeV is considered. The distributions for the other $s_{d_{1}}$ masses are very similar. The uncertainties are statistical only.