We present data on dimuon production by 16 GeV π + and π − beams on a Cu target. From the data we evaluate, for π − N collisions, the fraction of dimuon events that originate from the annihilation process q q ̄ → μ + μ − . Using this information the experimentally determined cross section for the process q q ̄ → μ + μ − is observed to be in agreement with the Drell-Yan model over a wide range of incident energies. The observed deviations from exact scaling are of the order predicted by QCD calculations for the Q 2 -dependence of the nucleon and the pion structure function.
CROSS SECTIONS ARE PER COPPER NUCLEUS.
CROSS SECTIONS ARE PER COPPER NUCLEUS.
We have performed a high-statistics experiment on the reaction π−p→K+K¯0π−n at 8.0 GeV/c. A Dalitz-plot analysis of the K+K¯0π− system finds that the D(1285) is a JPG=1++ state coupling predominantly to a δπ decay channel, while the E(1420) peak consists mostly of a JPG=0−+ wave with a substantial δπ decay mode. There is little evidence of a 1++ resonance at the E mass.
No description provided.
We have studied the reactions K − p → K − π + π − p and K − p → K 0 π − π 0 p at 14.3 GeV/ c using respectively 15 992 and 3723 events. Partial-wave analysis of the region 1.0 < m (K ππ ) < 1.7 GeV have been made using a modified version of the method developed at the University of Illinois.
No description provided.
We have measured the reaction γ p → p π + π − in the DESY 1 m Streamer Chamber. The dominant ϱ o production is analyzed in terms of various models.
No description provided.
FOR ALL EVENTS.
FOR ALL TWO PION EVENTS.