Results from a high-statistics experiment involving an exposure of the SLAC 82-in. hydrogen bubble chamber to a beam of 8-GeV/c π− yielding a final state of π−π+π−p are presented. Copious production of ρ, Δ++, and f is found. Considerable quasi-two-body production in which one particle decays to one of the above resonances is also observed. Some double-resonance production involving baryon and meson resonances is also seen. The production properties of ρ, Δ++, and f mesons are well described by a double-Regge model.
TOPOLOGICAL CROSS SECTIONS. FIRST 2 PRONG VALUE CONTAINS ELASTIC. 0PRONG IS TAKEN FROM A SMALLER AND DIFFERENT PARTIAL SAMPLE.
CROSS SECTION CALCULATED VIA THE OPTICAL THEOREM AS A CROSS CHECK.
SPECIFIC CHANNEL CROSS SECTIONS.
An experiment using the Fermilab Single Arm Spectrometer (SAS) facility and an associated nonmagnetic vertex detector studied the reactions a+p→c+X, where a and c were π±, K±, p, or p¯. Extensive measurements were made at 100 and 175 GeV/c beam momenta with the outgoing hadrons detected in the SAS covering a kinematic range 0.12<x<1.0 and pT<1.25 GeV/c. Additional data covering a more restricted range in x were also gathered at 70 GeV/c incident momentum. In this high-statistics experiment, the identification of both the incoming and outgoing charged hadrons were made with a total of eight Čerenkov counters. New and extensive single-particle inclusive data for charged-particle production in low-pT hadronic fragmentation are presented. The average associated charged-particle multiplicity and pseudorapidity distributions are also given.
No description provided.
No description provided.
No description provided.
We present an analysis of ππN final states obtained from π−p interactions at 2.26 GeV/c. Strong ρ production is present in both final states. In addition, significant nucleon isobar production is observed. We observed the following cross sections: σ(π−π0p)=3.77±0.13 mb, σ(π−π+n)=5.67±0.17 mb, σ(ρ−p)=2.19±0.09 mb, σ(Δ+(1236)π−)=0.30±0.10 mb, σ(N0(1650)π0)=0.49±0.07 mb, σ(ρ0n)=2.89±0.11 mb, σ(Δ−(1236)π+)=0.11±0.06 mb, σ(N+(1470)π−)=0.24±0.06 mb, and σ(N+(1650)π−)=0.45±0.05 mb. The spin-density matrix elements are determined for the ρ0 by interpreting the ρ0 asymmetry as an interference between the resonant P wave and a T=0 S wave. A search for the ε0 in the π+π−n final state failed to yield a direct observation of this effect.
No description provided.