This paper presents a study of $Z \to ll\gamma~$decays with the ATLAS detector at the Large Hadron Collider. The analysis uses a proton-proton data sample corresponding to an integrated luminosity of 20.2 fb$^{-1}$ collected at a centre-of-mass energy $\sqrt{s}$ = 8 TeV. Integrated fiducial cross-sections together with normalised differential fiducial cross-sections, sensitive to the kinematics of final-state QED radiation, are obtained. The results are found to be in agreement with state-of-the-art predictions for final-state QED radiation. First measurements of $Z \to ll\gamma\gamma$ decays are also reported.
Unfolded $M(l^{+}\gamma)$ distribution for $Z \to ee\gamma$ process with dressed leptons and bkg subtraction. $M_{ll}>20$ GeV. Nexp.un f. = 63717.4 $\pm$ 252.4, NPowHeg truth =338714.
Unfolded $M(l^{-}\gamma)$ distribution for $Z \to ee\gamma$ process with dressed leptons and bkg subtraction. $M_{ll}>20$ GeV. Nexp.un f. = 63855.8 $\pm$ 252.7 , NPowHeg truth =338708.
Unfolded $M(l^{+}\gamma)$ distribution for $Z \to \mu\mu\gamma$ process with dressed leptons and bkg subtraction. $M_{ll}>20$ GeV. Nexp.un f. = 64809.8 $\pm$ 254.6, NPowHeg truth =634285.
A search for supersymmetry targeting the direct production of winos and higgsinos is conducted in final states with either two leptons ($e$ or $\mu$) with the same electric charge, or three leptons. The analysis uses 139 fb$^{-1}$ of $pp$ collision data at $\sqrt{s}=13$ TeV collected with the ATLAS detector during Run 2 of the Large Hadron Collider. No significant excess over the Standard Model expectation is observed. Simplified and complete models with and without $R$-parity conservation are considered. In topologies with intermediate states including either $Wh$ or $WZ$ pairs, wino masses up to 525 GeV and 250 GeV are excluded, respectively, for a bino of vanishing mass. Higgsino masses smaller than 440 GeV are excluded in a natural $R$-parity-violating model with bilinear terms. Upper limits on the production cross section of generic events beyond the Standard Model as low as 40 ab are obtained in signal regions optimised for these models and also for an $R$-parity-violating scenario with baryon-number-violating higgsino decays into top quarks and jets. The analysis significantly improves sensitivity to supersymmetric models and other processes beyond the Standard Model that may contribute to the considered final states.
Observed exclusion limits at 95% CL for the WZ-mediated simplified model of wino $\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{0}_{2}$ production from Fig 13(b) and Fig 8(aux).
positive one $\sigma$ observed exclusion limits at 95% CL for the WZ-mediated simplified model of wino $\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{0}_{2}$ production from Fig 13(b) and Fig 8(aux).
negative $\sigma$ variation of observed exclusion limits at 95% CL for the WZ-mediated simplified model of wino $\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{0}_{2}$ production from Fig 13(b) and Fig 8(aux).
A search is presented for displaced production of Higgs bosons or $Z$ bosons, originating from the decay of a neutral long-lived particle (LLP) and reconstructed in the decay modes $H\rightarrow \gamma\gamma$ and $Z\rightarrow ee$. The analysis uses the full Run 2 data set of proton$-$proton collisions delivered by the LHC at an energy of $\sqrt{s}=13$ TeV between 2015 and 2018 and recorded by the ATLAS detector, corresponding to an integrated luminosity of 139 fb$^{-1}$. Exploiting the capabilities of the ATLAS liquid argon calorimeter to precisely measure the arrival times and trajectories of electromagnetic objects, the analysis searches for the signature of pairs of photons or electrons which arise from a common displaced vertex and which arrive after some delay at the calorimeter. The results are interpreted in a gauge-mediated supersymmetry breaking model with pair-produced higgsinos that decay to LLPs, and each LLP subsequently decays into either a Higgs boson or a $Z$ boson. The final state includes at least two particles that escape direct detection, giving rise to missing transverse momentum. No significant excess is observed above the background expectation. The results are used to set upper limits on the cross section for higgsino pair production, up to a $\tilde\chi^0_1$ mass of 369 (704) GeV for decays with 100% branching ratio of $\tilde\chi^0_1$ to Higgs ($Z$) bosons for a $\tilde\chi^0_1$ lifetime of 2 ns. A model-independent limit is also set on the production of pairs of photons or electrons with a significant delay in arrival at the calorimeter.
Average timing distributions for SR data and the estimated background as determined by the background-only fit, in each of the five exclusive $\rho$ categories. For comparison, the expected timing shapes for a few different signal models are superimposed, with each model labeled by the values of the $\tilde\chi^0_1$ mass and lifetime, as well as decay mode. To provide some indication of the variations in signal yield and shape, three signal models are shown for each of the $\tilde\chi^0_1$ decay modes, namely $\tilde\chi^0_1$ $\rightarrow$ $H \tilde G$ and $\tilde\chi^0_1$ $\rightarrow$ $Z \tilde G$. The models shown include a rather low $\tilde\chi^0_1$ mass value of 135 GeV for lifetimes of either 2 ns or 10 ns, and a higher $\tilde\chi^0_1$ mass value which is near the 95% CL exclusion limit for each decay mode for a lifetime of 2 ns. Each signal model is shown with the signal normalization corresponding to a BR value of unity for the decay mode in question.
Average timing distributions for SR data and the estimated background as determined by the background-only fit, in each of the five exclusive $\rho$ categories. For comparison, the expected timing shapes for a few different signal models are superimposed, with each model labeled by the values of the $\tilde\chi^0_1$ mass and lifetime, as well as decay mode. To provide some indication of the variations in signal yield and shape, three signal models are shown for each of the $\tilde\chi^0_1$ decay modes, namely $\tilde\chi^0_1$ $\rightarrow$ $H \tilde G$ and $\tilde\chi^0_1$ $\rightarrow$ $Z \tilde G$. The models shown include a rather low $\tilde\chi^0_1$ mass value of 135 GeV for lifetimes of either 2 ns or 10 ns, and a higher $\tilde\chi^0_1$ mass value which is near the 95% CL exclusion limit for each decay mode for a lifetime of 2 ns. Each signal model is shown with the signal normalization corresponding to a BR value of unity for the decay mode in question.
Average timing distributions for SR data and the estimated background as determined by the background-only fit, in each of the five exclusive $\rho$ categories. For comparison, the expected timing shapes for a few different signal models are superimposed, with each model labeled by the values of the $\tilde\chi^0_1$ mass and lifetime, as well as decay mode. To provide some indication of the variations in signal yield and shape, three signal models are shown for each of the $\tilde\chi^0_1$ decay modes, namely $\tilde\chi^0_1$ $\rightarrow$ $H \tilde G$ and $\tilde\chi^0_1$ $\rightarrow$ $Z \tilde G$. The models shown include a rather low $\tilde\chi^0_1$ mass value of 135 GeV for lifetimes of either 2 ns or 10 ns, and a higher $\tilde\chi^0_1$ mass value which is near the 95% CL exclusion limit for each decay mode for a lifetime of 2 ns. Each signal model is shown with the signal normalization corresponding to a BR value of unity for the decay mode in question.
This paper reports a search for Higgs boson pair ($hh$) production in association with a vector boson ($W$ or $Z$) using 139 $fb^{-1}$ of proton-proton collision data at $\sqrt{s}=$ 13 TeV recorded with the ATLAS detector at the Large Hadron Collider. The search is performed in final states in which the vector boson decays leptonically ($W\to\ell\nu, Z\to\ell\ell,\nu\nu$ with $\ell=e, \mu$) and the Higgs bosons each decay into a pair of $b$-quarks. It targets $Vhh$ signals from both non-resonant $hh$ production, present in the Standard Model (SM), and resonant $hh$ production, as predicted in some SM extensions. A 95% confidence-level upper limit of 183 (87) times the SM cross-section is observed (expected) for non-resonant $Vhh$ production when assuming the kinematics are as expected in the SM. Constraints are also placed on Higgs boson coupling modifiers. For the resonant search, upper limits on the production cross-sections are derived for two specific models: one is the production of a vector boson along with a neutral heavy scalar resonance $H$, in the mass range 260-1000 GeV, that decays into $hh$, and the other is the production of a heavier neutral pseudoscalar resonance $A$ that decays into a $Z$ boson and $H$ boson, where the $A$ boson mass is 360-800 GeV and the $H$ boson mass is 260-400 GeV. Constraints are also derived in the parameter space of two-Higgs-doublet models.
Acceptance times efficiency as a function of resonant mass for each event selection step in the search for a neutral heavy scalar resonance produced in association with a Z boson decaying to neutrinos.
Acceptance times efficiency as a function of resonant mass for each event selection step in the search for a neutral heavy scalar resonance produced in association with a W boson decaying to a charged lepton and a neutrino.
Acceptance times efficiency as a function of resonant mass for each event selection step in the search for a neutral heavy scalar resonance produced in association with a Z boson decaying to charged leptons.
A search for events with a dark photon produced in association with a dark Higgs boson via rare decays of the Standard Model $Z$ boson is presented, using 139 fb$^{-1}$ of $\sqrt{s} = 13$ TeV proton-proton collision data recorded by the ATLAS detector at the Large Hadron Collider. The dark Higgs boson decays into a pair of dark photons, and at least two of the three dark photons must each decay into a pair of electrons or muons, resulting in at least two same-flavor opposite-charge lepton pairs in the final state. The data are found to be consistent with the background prediction, and upper limits are set on the dark photon's coupling to the dark Higgs boson times the kinetic mixing between the Standard Model photon and the dark photon, $\alpha_{D}\varepsilon^2$, in the dark photon mass range of $[5, 40]$ GeV except for the $\Upsilon$ mass window $[8.8, 11.1]$ GeV. This search explores new parameter space not previously excluded by other experiments.
Observed and expected upper limits at 95% CL on the production cross-section times branching fraction as a function of $m_{A'}$ at dark Higgs boson mass of 20 GeV
Observed and expected upper limits at 95% CL on the production cross-section times branching fraction as a function of $m_{A'}$ at dark Higgs boson mass of 30 GeV
Observed and expected upper limits at 95% CL on the production cross-section times branching fraction as a function of $m_{A'}$ at dark Higgs boson mass of 40 GeV
This Letter presents the first study of the energy-dependence of diboson polarization fractions in $WZ \rightarrow \ell\nu \ell'\ell'~(\ell, \ell'=e, \mu)$ production. The data set used corresponds to an integrated luminosity of 140 fb$^{-1}$ of proton-proton collisions at a center-of-mass energy of 13 TeV recorded by the ATLAS detector. Two fiducial regions with an enhanced presence of events featuring two longitudinally-polarized bosons are defined. A non-zero fraction of events with two longitudinally-polarized bosons is measured with an observed significance of 5.2 standard deviations in the region with $100
Polarization fractions in the region with $100<p_T^Z\leq200$ GeV using three unconstrained parameters.
Polarization fractions in the region with $p_T^Z>200$ GeV using three unconstrained parameters.
Fraction of events where both bosons are longitudinally polarized in the region with $100<p_T^Z\leq200$ GeV using two unconstrained parameters.
Differential and double-differential distributions of kinematic variables of leptons from decays of top-quark pairs ($t\bar{t}$) are measured using the full LHC Run 2 data sample collected with the ATLAS detector. The data were collected at a $pp$ collision energy of $\sqrt{s}=13$ TeV and correspond to an integrated luminosity of 140 fb$^{-1}$. The measurements use events containing an oppositely charged $e\mu$ pair and $b$-tagged jets. The results are compared with predictions from several Monte Carlo generators. While no prediction is found to be consistent with all distributions, a better agreement with measurements of the lepton $p_{\text{T}}$ distributions is obtained by reweighting the $t\bar{t}$ sample so as to reproduce the top-quark $p_{\text{T}}$ distribution from an NNLO calculation. The inclusive top-quark pair production cross-section is measured as well, both in a fiducial region and in the full phase-space. The total inclusive cross-section is found to be \[ \sigma_{t\bar{t}} = 829 \pm 1\;(\textrm{stat}) \pm 13\;(\textrm{syst}) \pm 8\;(\textrm{lumi}) \pm 2\; (\textrm{beam})\ \textrm{pb}, \] where the uncertainties are due to statistics, systematic effects, the integrated luminosity and the beam energy. This is in excellent agreement with the theoretical expectation.
Definition of the fiducial phase space with the lepton candidate, electron $e$ and muon $\mu$, and jets.
Breakdown of systematic uncertainties in the measured fiducial cross-section. The impact of the top-quark mass on the cross-section is included in the table and not counted in the total uncertainty entry in the paper.
Data bootstrap post unfolding for the fiducial cross-section. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. All the provided numbers originate from pseudo-data, including the 0th entry, and are in units of [fb].
A search for a light charged Higgs boson produced in decays of the top quark, $t \to H^\pm b$ with $H^\pm \to cs$, is presented. This search targets the production of top-quark pairs $t\bar{t} \to Wb H^\pm b$, with $W \to \ell\nu$ ($\ell = e, \mu$), resulting in a lepton-plus-jets final state characterised by an isolated electron or muon and at least four jets. The search exploits $b$-quark and $c$-quark identification techniques as well as multivariate methods to suppress the dominant $t\bar{t}$ background. The data analysed correspond to 140 $\text{fb}^{-1}$ of $pp$ collisions at $\sqrt{s} = 13$ TeV recorded with the ATLAS detector at the LHC between 2015 and 2018. Observed (expected) 95% confidence-level upper limits on the branching fraction $\mathscr{B}(t\to H^\pm b)$, assuming $\mathscr{B}(t\to Wb) + \mathscr{B}(t \to H^\pm (\to cs)b)=1.0$, are set between 0.066% (0.077%) and 3.6% (2.3%) for a charged Higgs boson with a mass between 60 GeV and 168 GeV.
Distributions of the dijet mass. The processes $t\bar{t}$(allHad), $tW$, Single top, $t\bar{t}H$, Other top, $W$ + jets, $Z$ + jets, and $VV$ listed are combined with the multijet background in the ‘Other’ category. The uncertainty band represents the combined statistical and systematic uncertainty of the prediction. Overlaid are the shapes for the $H^{\pm}_{80}$ and $H^{\pm}_{150}$ signal samples normalised to the total background prediction.
Data and background yields after the background-only fit of the BDT-score distribution for the $130\,$GeV signal mass BDT training. For comparison, the expected signal yield for $\mathscr{B}_{H^{\pm}}=1.0\%$ is added.
Observed (solid line) and expected (dotted line) upper limits on $\mathscr{B}_{H^{\pm}}$ for charged Higgs boson with masses between $60\,$GeV and $168\,$GeV, assuming $\mathscr{B}(t \to H^{\pm}(\to cs) b) = 1.0$. The $\pm 1 \sigma$ and $\pm 2 \sigma$ variations around the expected upper limit are indicated by the green and yellow bands, respectively.
Measurements of the substructure of top-quark jets are presented, using 140 fb$^{-1}$ of 13 TeV $pp$ collision data recorded with the ATLAS detector at the LHC. Top-quark jets reconstructed with the anti-$k_{t}$ algorithm with a radius parameter $R=1.0$ are selected in top-quark pair ($t\bar{t}$) events where one top quark decays semileptonically and the other hadronically, or where both top quarks decay hadronically. The top-quark jets are required to have transverse momentum $p_\mathrm{T} > 350$ GeV, yielding large samples of data events with jet $p_\mathrm{T}$ values between 350 and 600 GeV. One- and two-dimensional differential cross-sections for eight substructure variables, defined using only the charged components of the jets, are measured in a particle-level phase space by correcting for the smearing and acceptance effects induced by the detector. The differential cross-sections are compared with the predictions of several Monte Carlo simulations in which top-quark pair-production quantum chromodynamic matrix-element calculations at next-to-leading-order precision in the strong coupling constant $\alpha_\mathrm{S}$ are passed to leading-order parton shower and hadronization generators. The Monte Carlo predictions for measures of the broadness, and also the two-body structure, of the top-quark jets are found to be in good agreement with the measurements, while variables sensitive to the three-body structure of the top-quark jets exhibit some tension with the measured distributions.
Absolute differential cross-section as a function of RC large-R jet $\tau_{32}$ at particle level in the $\ell$+jets channel. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Relative differential cross-section as a function of RC large-R jet $\tau_{32}$ at particle level in the $\ell$+jets channel. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
Absolute differential cross-section as a function of RC large-R jet $\tau_{21}$ at particle level in the $\ell$+jets channel. The measured differential cross-section is compared with the prediction obtained with the Powheg+Pythia8 Monte Carlo generator.
New particles with large masses that decay into hadronically interacting particles are predicted by many models of physics beyond the Standard Model. A search for a massive resonance that decays into pairs of dijet resonances is performed using 140 fb$^{-1}$ of proton$-$proton collisions at $\sqrt{s}=13$ TeV recorded by the ATLAS detector during Run 2 of the Large Hadron Collider. Resonances are searched for in the invariant mass of the tetrajet system, and in the average invariant mass of the pair of dijet systems. A data-driven background estimate is obtained by fitting the tetrajet and dijet invariant mass distributions with a four-parameter dijet function and a search for local excesses from resonant production of dijet pairs is performed. No significant excess of events beyond the Standard Model expectation is observed, and upper limits are set on the production cross-sections of new physics scenarios.
The average tetrajet invariant mass distributions in data, along with the fitted background estimates for 0.10 < $\alpha$ < 0.12.
The average tetrajet invariant mass distributions in data, along with the fitted background estimates for 0.12 < $\alpha$ < 0.14.
The average tetrajet invariant mass distributions in data, along with the fitted background estimates for 0.14 < $\alpha$ < 0.16.