Q-meson production is studied in the hypercharge exchange reaction π-p → (Kππ)Λ at 3.95 GeV/c by selecting events witht(π- →Kππ)>1.2GeV2. An enhancement with a mass of 1294±10 MeV and a width of 66±15 MeV is observed in the (Kππ) mass distribution. A spin-parity analysis of the (Kππ) decay Dalitz plot shows the enhancement to be in theJP=1+S(Kϱ) wave and is therefore attributed toQ1-meson production. No evidence is found for the decayQ1→K0ω but limited statistics allow only placing an upper limit of 30% for the decay ratioKω/Kϱ0. TheQ1 production cross section fort(π- →Kππ)>1.2GeV2 is 8±1.3 μb. No evidence is found for the process π-p→Q2Λ withQ2→K*π for which the partial wave analysis gives an upper cross section limit of 2.5 μb at the 95% confidence level.
PRODUCTION OF Q1 OF MASS 1294 +- 10 MEV, WIDTH 66 +- 15 MEV. IN BACKWARD HEMISPHERE, CROSS SECTION IS <0.5 MUB (CL = 95 PCT).
UPPER LIMIT FOR PRODUCTION OF Q2 OF MASS AROUND 1400 MEV.
Results on kaon, pion, and proton production in muon-proton scattering are presented for 1<Q2<80 GeV2 with an average Bjorken x of 0.033. The measured particle fractions for z>0.2(z=Phadν) are fπ=0.764±0.028, fK=0.187±0.042, and fp=0.049±0.013. The K±π± ratios as a function of z and pT2 are presented: The ratios increase with z, and with pT2 for z<0.3.
No description provided.
None
No description provided.
None
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
None
No description provided.
None
No description provided.
No description provided.
The absolute cross sections for the production of 11 C by 1.59 GeV and 4.19 GeV α-particles incident on natural carbon have been measured to be 46.4 ± 1.3 mb and 42.5 ± 1.1 mb respectively. These results, together with data reported at other energies, indicate that the C(α, X) 11 C cross section becomes approximately constant at a value of about 43 mb for energies above 3 GeV (750 MeV/n). A similar energy dependence is exhibited by the C(p, X) 11 C reaction whose cross section has been measured previously over an extensive energy range. The C(α, X) 11 C cross sections are found to be in good agreement with predictions of a semi-empirical model developed to describe nuclear fragmentation.
ALL SYSTEMATICAL ERRORS WERE INCLUDED INTO TABULATED ERRORS.
None
ERRORS SHOWN ARE STATISTCAL. STRUCTURE FUNCTIONS COMPUTED ASSUMING CALLAN-GROSS RELATION.
None
No description provided.