Measurements are reported of the differential cross section for the reaction π−p→π−p,π0n,andηn at three angles close to 180° and for incident momenta in the range 0.6 to 1.0 GeV/c. The three measurements were made simultaneously at 1% intervals of beam momentum. The data on elastic scattering resolve a discrepancy between two earlier experiments. They also show clearly the effect of the opening of the ηn channel. The charge-exchange data show that I-spin bounds are not violated in the kinematic region covered. The ηn data can be adequately described with known s-channel resonances. No evidence for narrow N*'s is seen in any channel.
No description provided.
No description provided.
The π−+p→π0+n differential cross section at 180° has been measured for 52 values of π− momentum from 1.8 to 6.0 GeV/c using a constant-geometry detection system. The average statistical uncertainty is ∼5% and the systematic uncertainty is ∼10%. The details of the experiment and the data analysis are discussed. The data are compared with those of other experiments with which they are generally in agreement. One set of data disagrees with those presented here and a possible reason for this is discussed. A five-parameter fit of the predictions of a dual-resonance model to our data gave excellent agreement. The differential cross sections at 180° for π±p elastic scattering have been compiled and the moduli and relative phase of the T=12 and T=32 pion-nucleon s- and u-channel amplitudes (|A12|, |A32|, and cosδ) have a minimum at u=0.4 GeV/c and, in the s channel, a corresponding minimum at s=2.2 GeV/c.
No description provided.
No description provided.
No description provided.
Small-angle differential cross sections are presented here for π−+p→π0+n charge-exchange scattering between 2.4 and 3.8 GeV/c. The differential cross section near t=0 displays two minima and one maximum in this momentum interval, reflecting the presence of the N32*(2420), N32*(2850), and N12*(2650) resonances; at larger t values, the cross sections fall off exponentially as a function of t, just as has been previously observed for charge-exchange scattering above 6 GeV/c. The pion-charge-exchange data reported here at 6 and 10 GeV/c extend out to large angles, showing a maximum near t=0, followed by an exponential falloff as e10t, a minimum near −t=0.6 (GeV/c)2, and then a second maximum near −t=1.0 (GeV/c)2. The π−+p→η0+n differential cross section shows a maximum near t=0, followed by an exponential falloff as e4t, much less steep than the π0 slope. These data are compared to our previously published data and to those of the Saclay-Orsay group.
No description provided.
No description provided.
No description provided.