This paper presents cross sections for the production of a W boson in association with jets, measured in proton--proton collisions at $\sqrt{s}=7$ TeV with the ATLAS experiment at the Large Hadron Collider. With an integrated luminosity of $4.6 fb^{-1}$, this data set allows for an exploration of a large kinematic range, including jet production up to a transverse momentum of 1 TeV and multiplicities up to seven associated jets. The production cross sections for W bosons are measured in both the electron and muon decay channels. Differential cross sections for many observables are also presented including measurements of the jet observables such as the rapidities and the transverse momenta as well as measurements of event observables such as the scalar sums of the transverse momenta of the jets. The measurements are compared to numerous QCD predictions including next-to-leading-order perturbative calculations, resummation calculations and Monte Carlo generators.
Distribution of inclusive jet multiplicity.
Breakdown of systematic uncertainties in percent in inclusive jet multiplicity in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in inclusive jet multiplicity in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Event-shape observables measured using charged particles in inclusive $Z$-boson events are presented, using the electron and muon decay modes of the $Z$ bosons. The measurements are based on an integrated luminosity of $1.1 {\rm fb}^{-1}$ of proton--proton collisions recorded by the ATLAS detector at the LHC at a centre-of-mass energy $\sqrt{s}=7$ TeV. Charged-particle distributions, excluding the lepton--antilepton pair from the $Z$-boson decay, are measured in different ranges of transverse momentum of the $Z$ boson. Distributions include multiplicity, scalar sum of transverse momenta, beam thrust, transverse thrust, spherocity, and $\mathcal{F}$-parameter, which are in particular sensitive to properties of the underlying event at small values of the $Z$-boson transverse momentum. The Sherpa event generator shows larger deviations from the measured observables than Pythia8 and Herwig7. Typically, all three Monte Carlo generators provide predictions that are in better agreement with the data at high $Z$-boson transverse momenta than at low $Z$-boson transverse momenta and for the observables that are less sensitive to the number of charged particles in the event.
No description provided.
No description provided.
No description provided.
The analyzing power,$A_{oono}$, and the polarization transfer observables$K_{onno}$,$K_{os''so}$
Position 'A' (see text for explanation).
Position 'A' (see text for explanation).
Position 'A' (see text for explanation).
We employ data taken by the JADE and OPAL experiments for an integrated QCD study in hadronic e+e- annihilations at c.m.s. energies ranging from 35 GeV through 189 GeV. The study is based on jet-multiplicity related observables. The observables are obtained to high jet resolution scales with the JADE, Durham, Cambridge and cone jet finders, and compared with the predictions of various QCD and Monte Carlo models. The strong coupling strength, alpha_s, is determined at each energy by fits of O(alpha_s^2) calculations, as well as matched O(alpha_s^2) and NLLA predictions, to the data. Matching schemes are compared, and the dependence of the results on the choice of the renormalization scale is investigated. The combination of the results using matched predictions gives alpha_s(MZ)=0.1187+{0.0034}-{0.0019}. The strong coupling is also obtained, at lower precision, from O(alpha_s^2) fits of the c.m.s. energy evolution of some of the observables. A qualitative comparison is made between the data and a recent MLLA prediction for mean jet multiplicities.
Overall result for ALPHAS at the Z0 mass from the combination of the ln R-matching results from the observables evolved using a three-loop running expression. The errors shown are total errors and contain all the statistics and systematics.
Weighted mean for ALPHAS at the Z0 mass determined from the energy evolutions of the mean values of the 2-jet cross sections obtained with the JADE and DURHAMschemes and the 3-jet fraction for the JADE, DURHAM and CAMBRIDGE schemes evaluted at a fixed YCUT.. The errors shown are total errors and contain all the statistics and systematics.
Combined results for ALPHA_S from fits of matched predicitions. The first systematic (DSYS) error is the experimental systematic, the second DSYS error isthe hadronization systematic and the third is the QCD scale error. The values of ALPHAS evolved to the Z0 mass using a three-loop evolution are also given.
Measurements of normalized differential cross-sections of top-quark pair production are presented as a function of the top-quark, $t\bar{t}$ system and event-level kinematic observables in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=8$ TeV}. The observables have been chosen to emphasize the $t\bar{t}$ production process and to be sensitive to effects of initial- and final-state radiation, to the different parton distribution functions, and to non-resonant processes and higher-order corrections. The dataset corresponds to an integrated luminosity of 20.3 fb$^{-1}$, recorded in 2012 with the ATLAS detector at the CERN Large Hadron Collider. Events are selected in the lepton+jets channel, requiring exactly one charged lepton and at least four jets with at least two of the jets tagged as originating from a $b$-quark. The measured spectra are corrected for detector effects and are compared to several Monte Carlo simulations. The results are in fair agreement with the predictions over a wide kinematic range. Nevertheless, most generators predict a harder top-quark transverse momentum distribution at high values than what is observed in the data. Predictions beyond NLO accuracy improve the agreement with data at high top-quark transverse momenta. Using the current settings and parton distribution functions, the rapidity distributions are not well modelled by any generator under consideration. However, the level of agreement is improved when more recent sets of parton distribution functions are used.
Fiducial phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system invariant mass $m^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space relative differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system invariant mass $m^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
Fiducial phase-space absolute differential cross-sections after combining the e+jets and $\mu$+jets channels for the $t\bar{t}$ system transverse momentum $p_{T}^{t\bar{t}}$. All uncertainties are quoted as a percentage with respect to the cross-section values in each bin.
The differential cross sections for K − p and p p elastic scattering have been measured over the range of four-momentum transfer squared 0.18<− t <3.3 (GeV/ c ) 2 . The K − p data decrease smoothly as a function of − t , whereas, the p p data shows a break at − t = 0.6 (GeV/ c ) 2 followed by a fast drop to − t ≅ 1.6 (GeV/ c ) 2 where the differential cross section levels off and stays constant out to − t = 3 (GeV/ c ) 2 .
No description provided.
No description provided.
A description is given of an experimental study of exchange degeneracy (EXD) in hypercharge-exchange reactions using the line-reversed partners π + p→K + Σ + (K − p→ π − Σ + ) and π + p→ K + Σ + (1385) (K − p→ π − Σ + (1385)) at incident momenta of 7.0 and 10.1 GeV/ c . Both pairs of reaction were measured in the same apparatus, with particular care being taken to minimize relative normalization errors. For the Σ production reactions we present high statistics measurements of the differential cross sections and polarizations from t ′=0 to large t . The general trends of the data agree with naive expectations from weak EXD. The cross-section difference in the extreme forward direction at the higher momentum is consistent with zero and there is a general reduction in the cross-section differences going from the lower to the higher momentum. The polarizations are approximately equal in magnitude and of opposite sign between the two reactions. On the other hand, the data do not agree with the detailed predictions of EXD. The slope for the positive reaction is systematically steeper in the forward region than for the negative reaction and there is a complex s and t dependence for the cross-section differences including a cross-over at t ⋍ −0.8( GeV /c) 2 . For the Σ(1385) production reactions, we present differential cross-section measurements in the forward region (| t |<0.3(GeV/ c ) 2 ). The cross-section differences are substantial and essentially constant over the s and t ranges studied.
THESE RESULTS WERE BRIEFLY REPORTED IN A. BERGLUND ET AL., PL 73B, 369 (1978), THE RECORD OF WHICH INCLUDES THE TABULATED DATA.
THE RESULTS AT 10.1 GEV WERE FIRST PUBLISHED IN A. BERGLUND ET AL., PL 60B, 117 (1975), THE RECORD OF WHICH INCLUDES THE TABULATED DATA.
We present results on the differential cross-sections for the reactions π + p → K + Σ + (1385) and K − p → π − Σ + (1385) at 10 GeV/ c . For the first time, the same equipment has been used in measuring both reactions, in order to obtain good relative normalization. In the region of low t ( t min to −0.3 (GeV/ c ) 2 ) the two differential cross-sections have similar shape, and show a sharp forward dip indicating a dominant helicity flip contribution. However, the magnitudes of the cross-sections are significantly different, indicating substantial exchange degeneracy breaking. We find the ratio of the integrated cross-sections for the reactions K − p → π − Σ + (1385) and π + p → K + Σ + (1385) over the range −0.3 < t ′ < 0.0 (GeV/ c ) 2 to be 2.0 ± 0.2.
TMIN = -0.013 GEV**2.
TMIN = +0.012 GEV**2.
For the first time, the line reversed reactions π + p→K + Σ + and K − p→ π − Σ + have been studied in the same apparatus. We present the differential cross sections and polarizations over a large t range and at two momenta, 7.0 and 10.1 GeV/ c . The differential cross sections as a function of t are shown for the first time to cross over. Going from the lower to the higher momentum, the differences in cross section between the two reactions diminish at low | t | by about a factor 2. We find large polarizations of opposite sign for the two reactions. The momentum dependence, presented in the form of α eff ( t ) for the t range 0 to −2 (GeV/ c ) 2 , is compared with the expectations from the K ∗ −K ∗∗ trajectory.
-TMIN = 0.0100 GEV**2.
-TMIN = -0.0087 GEV**2.
-TMIN = 0.0067 GEV**2.
For the first time, the reactions π + p →K + ∑ + and K − p→ π − ∑ + have been studied in the same apparatus. This has been done at an adequately high momentum (10.1 GeV/ c ) to allow a check of the prediction of exchange degeneracy, that the differential cross sections should be converging at high energy. We have measured the cross section for momentum transfers t between t min and t = −0.3 (GeV/ c ) 2 . We find that for both reactions the differential cross section shows an exponential fall, with no deviations right in to t = t min (where some other experiments have shown a dip in the cross section). Furthermore, we find the magnitude of the differential cross sections to be closely similar at t = 0, with a ratio R= ( d σ d t) t=0 ( K − p →π − ∑ + ) ( d σ d t) t=0 (π + p → K + ∑ + However, the slope for the positive reaction is about 19% steeper than that for the negative reaction.
No description provided.