Inclusive J/psi production in pp collisions at sqrt(s) = 2.76 TeV

The ALICE collaboration Abelev, B. ; Adam, J. ; Adamova, D. ; et al.
Phys.Lett.B 718 (2012) 295-306, 2012.
Inspire Record 1094079 DOI 10.17182/hepdata.62231

The ALICE Collaboration has measured inclusive J/psi production in pp collisions at a center of mass energy sqrt(s)=2.76 TeV at the LHC. The results presented in this Letter refer to the rapidity ranges |y|<0.9 and 2.5

4 data tables

Double differential J/$\psi$ production cross section at $\sqrt{s}=2.76$ TeV. The first uncertainty is statistical, the second one is $p_{\rm T}$-coorelated, the third one is uncorrelated. Polarization-related uncertainties are not included.

The $\sqrt{s}$-dependence of $\langle p_{\rm T}\rangle$ for inclusive J/$\psi$ production (forward rapidity).

the $\sqrt{s}$-dependence of $\langle p_{\rm T}\rangle$ for inclusive J/$\psi$ production (forward rapidity).

More…

Centrality dependent particle production at y = 0 and y approx. 1 in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The BRAHMS collaboration Arsene, I. ; Bearden, I.G. ; Beavis, D. ; et al.
Phys.Rev.C 72 (2005) 014908, 2005.
Inspire Record 678407 DOI 10.17182/hepdata.89446

Particle production of identified charged hadrons, $\pi^{\pm}$, $K^{\pm}$, $p$, and $\bar{p}$ in Au+Au collisions at $\sqrt(snn) =$ 200 GeV has been studied as a function of transverse momentum and collision centrality at $y=0$ and $y\sim1$ by the BRAHMS experiment at RHIC. Significant collective transverse flow at kinetic freeze-out has been observed in the collisions. The magnitude of the flow rises with the collision centrality. Proton and kaon yields relative to the pion production increase strongly as the transverse momentum increases and also increase with centrality. Particle yields per participant nucleon show a weak dependence on the centrality for all particle species. Hadron production remains relatively constant within one unit around midrapidity in Au+Au collisions at $\sqrt(snn) =$ 200 GeV.

13 data tables

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$,$\mathrm{\pi}^{-}$,$\mathrm{K}^{+}$,$\mathrm{K}^{-}$,$\mathrm{p}$,$\overline{\mathrm{p}}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

$\langle p_{\mathrm{T}}\rangle$ versus $N_{\mathrm{part}}$ for $\mathrm{\pi}^{+}$,$\mathrm{\pi}^{-}$,$\mathrm{K}^{+}$,$\mathrm{K}^{-}$,$\mathrm{p}$,$\overline{\mathrm{p}}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

$\beta_{\mathrm{S}}$,$T$,$\chi^2$,$\nu$ versus $\mathrm{Centrality}$ for $\mathrm{h}^{+}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

More…