Inclusive differential cross sections $d\sigma_{pA}/dx_F$ and $d\sigma_{pA}/dp_t^2$ for the production of \kzeros, \lambdazero, and \antilambda particles are measured at HERA in proton-induced reactions on C, Al, Ti, and W targets. The incident beam energy is 920 GeV, corresponding to $\sqrt {s} = 41.6$ GeV in the proton-nucleon system. The ratios of differential cross sections \rklpa and \rllpa are measured to be $6.2\pm 0.5$ and $0.66\pm 0.07$, respectively, for \xf $\approx-0.06$. No significant dependence upon the target material is observed. Within errors, the slopes of the transverse momentum distributions $d\sigma_{pA}/dp_t^2$ also show no significant dependence upon the target material. The dependence of the extrapolated total cross sections $\sigma_{pA}$ on the atomic mass $A$ of the target material is discussed, and the deduced cross sections per nucleon $\sigma_{pN}$ are compared with results obtained at other energies.
Inclusive differential cross section DSIG/DXL for K0S production in the XL interval -0.12 to 0.0 plus the total cross section after extrapolation to the full XL range.
Inclusive differential cross section DSIG/DXL for LAMBDA production in the XL interval -0.12 to 0.0 plus the total cross section after extrapolation to thefull XL range.
Inclusive differential cross section DSIG/DXL for LAMBDABAR production in the XL interval -0.12 to 0.0 plus the total cross section after extrapolation to the full XL range.
The hadronic photon structure function $F_2^\gamma(x,Q^2)$ is measured from data taken with the ALEPH detector at LEP. At centre-of-mass energies between
Measured value of F2/ALPHAE at a mean Q**2 of 17.3 GeV**2.
Measured value of F2/ALPHAE at a mean Q**2 of 67.2 GeV**2.
Statistical correlation coefficients for the F2 measurements at Q**2 = 17.3 GeV**2.
We measured the inclusive electron-proton cross section in the nucleon resonance region (W < 2.5 GeV) at momentum transfers Q**2 below 4.5 (GeV/c)**2 with the CLAS detector. The large acceptance of CLAS allowed for the first time the measurement of the cross section in a large, contiguous two-dimensional range of Q**2 and x, making it possible to perform an integration of the data at fixed Q**2 over the whole significant x-interval. From these data we extracted the structure function F2 and, by including other world data, we studied the Q**2 evolution of its moments, Mn(Q**2), in order to estimate higher twist contributions. The small statistical and systematic uncertainties of the CLAS data allow a precise extraction of the higher twists and demand significant improvements in theoretical predictions for a meaningful comparison with new experimental results.
No description provided.
No description provided.
No description provided.
The inclusive production of D$^{*\pm}$ mesons in two-photon collisions is measured with the ALEPH detector at $\epem$ centre-of-mass energies from 183$\unit{GeV}$ to 209$\unit{GeV}$. A total of $360 \pm 27$ D$^{*\pm}$ meson events were observed from an integrated luminosity of 699\unit{pb^{-1}}$. Contributions from direct and single-resolved rocesses are separated using the ratio of the transverse momentum $p_{\rm t}^{\rm D^{*\pm}}$ of the D$^{*\pm}$ to the visible invariant mass $W_{\mathrm{vis}}$ of the event. Differential cross sections of D$^{*\pm}$ production as functions of $p_{\rm t}^{\rm D^{*\pm}}$ and the pseudorapidity $|\eta^{\rm D^{*\pm}}| $ are measured in the range $ 2\unit{GeV}/c < p_{\rm t}^{\rm D^{*\pm}} < 12\unit{GeV}/c $ and $ |\eta^{\rm D^{*\pm}}| < 1.5 $. They are compared to next-to-leading order (NLO)perturbative QCD calculations. The extrapolation of the integrated visible D$^{*\pm}$ cross section to the total charm cross section, based on the Pythia Monte Carlo program, yields $ \sigma (\epem \to \epem \ccbar)_ {=197\unit{GeV}} = 731 \pm 74_{\mathrm{stat}} \pm 47_{\mathrm{syst}} \pm 157_{\mathrm{extr}} \unit{pb} $.
Total extrapolated charm production cross section. The second DSYS error isdue to the uncertainty in the extrapolation.
Visible cross section with the acceptance range.
Visible cross section within the acceptance ranges for the three decay modes observed.
Dijet angular distributions of photoproduction events in which a $D^{*\pm}$ meson is produced in association with one of two energetic jets have been measured with the ZEUS detector at HERA, using an integrated luminosity of 120 pb$^{-1}$. Differential cross sections as a function of the angle between the charm-jet and the proton-beam direction in the dijet rest frame have been measured for samples enriched in direct or resolved photon events. The results are compared with predictions from leading-order parton-shower Monte Carlo models and with next-to-leading-order QCD calculations. The angular distributions show clear evidence for the existence of charm originating from the photon.
The differential cross section DSIG/DXOBS(C=GAMMA) as a function of XOBS(C=GAMMA).
The differential cross section DSIG/DXOBS(C=PROTON) as a function of XOBS(C=PROTON).
The dijet angular distributions as a function of the absolute value of the dijet scattering angle for two XOBS(C=GAMMA) regions separating resolved and direct photon processes.
The reaction e^+e^- -> e^+e^- proton antiproton is studied with the L3 detector at LEP. The analysis is based on data collected at e^+e^- center-of-mass energies from 183 GeV to 209 GeV, corresponding to an integrated luminosity of 667 pb^-1. The gamma gamma -> proton antiproton differential cross section is measured in the range of the two-photon center-of-mass energy from 2.1 GeV to 4.5 GeV. The results are compared to the predictions of the three-quark and quark-diquark models.
Total cross section for P PBAR production at a mean centre-of-mass energy of 197 GeV.
The cross section as a function of W for ABS(COS(THETA)) < 0.6.
The differential cross section as a function of COS(THETA*) for three W ranges.
The cross section for deeply virtual Compton scattering in the reaction ep -> e gamma p has been measured with the ZEUS detector at HERA using integrated luminosities of 95.0 pb-1 of e+p and 16.7 pb-1 of e-p collisions. Differential cross sections are presented as a function of the exchanged-photon virtuality, Q2, and the centre-of-mass energy, W, of the gamma*p system in the region 5 < Q2 < 100 GeV2 and 40 < W < 140 GeV. The measured cross sections rise steeply with increasing W. The measurements are compared to QCD-based calculations.
Measurements of the DVCS process cross section as a function of Q**2 at average W = 89 GeV. Data are given seperately for the E+ P and E- P interactions.
Measurements of the DVCS process cross section as a function of W at average Q**2 = 9.6 GeV**2. For the E+ P data sample.
Measurements of the DVCS process cross section as a function of W at average Q**2 = 9.6 GeV**2. For the E- P data sample.
Exclusive production of π and K meson pairs in two photon collisions is measured with ALEPH data collected between 1992 and 2000. Cross-sections are presented as a function of cos θ ∗ and invariant mass, for | cos θ ∗ |<0.6 and invariant masses between 2.0 and 6.0 GeV/ c 2 (2.25 and 4.0 GeV/ c 2 ) for pions (kaons). The shape of the distributions are found to be well described by QCD predictions but the data have a significantly higher normalization.
Measured angular distribution for pion production.
Measured angular distribution for kaon production.
Measured cross section for pion production as a function of W.
The interaction of virtual photons is investigated using double tagged gammagamma events with hadronic final states recorded by the ALEPH experiment at e^+e^- centre-of-mass energies between 188 and 209 GeV. The measured cross section is compared to Monte Carlo models, and to next-to-leading-order QCD and BFKL calculations.
Differential cross section as a function of the relative energy of the scattered electrons.
Differential cross section as a function of the polar angle THETA of the scattered electrons.
Differential cross section as a function of the virtuality Q**2 of the photons.
Exclusive rho rho production in two-photon collisions involving a single highly virtual photon is studied with data collected at LEP at centre-of-mass energies 89GeV < \sqrt{s} < 209GeV with a total integrated luminosity of 854.7pb^-1 The cross section of the process gamma gamma^* -> rho rho is determined as a function of the photon virtuality, Q^2 and the two-photon centre-of-mass energy, Wgg, in the kinematic region: 1.2GeV^2 < Q^2 < 30GeV^2 and 1.1GeV < Wgg < 3GeV.
Production cross sections as a function of Q**2. The differential cross sections are corrected to the centre of each bin.
Production cross section for the two photon data as a function of Q**2.
Differential cross section for non-resonance and RHO0 RHO0 data corrected to the centre of each bin.