At the Bonn 2.5 GeV synchrotron the differential photoproduction cross section d σ /d t of φ mesons has been measured at a photon energy of 2.0 GeV at fibe different t values between 0.23 < | t | < 0.73 (GeV/ c ) 2 . The φ meson was detected by magnetic momentum analysis of both charged decay K mesons and by a time of flight and angle measurement of the coincident recoil proton. We found an exponential behaviour for the t dependence of the cross section. The measured slope of the exponential decrease was b = (4.01 ± 0.23) (GeV/ c −2 . This result, combined with previous measurements at higher energies, implies that the slope of the pomeron trajectory is compatible with zero. In addition the experiment yielded a value of the φ mass, m φ = (1019.4 ± 0.8) MeV and a value of the φ width, Γ = (4.4 ± 0.4) MeV.
No description provided.
In an experiment with the CERN 2 metre DBC the reaction K$^+$d $\to$ K$^0 \pi^+$d is studied at an incident momentum of 4.6 GeV/c. The cross section is found to be (66 ± 10) μb for four-momentum transfer squared from target to recoil deuteron greater than 0.02 GeV 2 , and the reaction is dominated by the production of K$^*+$ (892) via natural parity exchange. Using data for the reactions K$^\pm$d $\to$ K$^{*\pm}$(892)d in the incident momentum range 2–13 GeV/ c the parameters of the effective exchanged trajectory are estimated.
No description provided.
No description provided.
No description provided.
About 45000 interactions of antiprotons of kinetic energy between 57 and 170 MeV have been measured in a deuterium bubble chamber. Total and annihilation cross-sections have been determined at 9 values of the antiproton energy together with the differential crosssection dσ/dt for scattering events. In spite of the peculiar behaviour of the deuteron target at these low energies a reliable measure of the antiproton-neutron annihilation cross-section has been obtained.
INELASTIC (ANNILATION + CHARGE EXCHANGE), SCATTERING (ELASTIC + INELASTIC) AND TOTAL CROSS SECTIONS. AUTHORS ALSO GIVE TOPOLOGICAL DECOMPOSITION OF THESE CROSS SECTIONS.
SCATTERED ANTIPROTON ANGULAR DISTRIBUTION. THE OPTICAL POINT AT T=0 IS CALCULATED FROM THE TOTAL CROSS SECTION. SEPARATION INTO SCATTERING ON PROTONS AND ON NEUTRONS IS IMPOSSIBLE.
The differential cross sections for KL0p→KS0p scattering are presented in several momentum intervals between 1 and 10 GeVc. The data are strongly peaked in the forward direction, characteristic of a large s-channel helicity-nonflip scattering amplitude in this reaction, and a distinct break in the differential cross section occurs at |t|=0.3 GeV2. The phase of the forward scattering amplitude, φ, is consistent with being independent of momentum. The average value of the phase, φ=−133.9±4.0∘, corresponds to a Regge trajectory α(0)=0.49±0.05 in agreement with the canonical ρ, ω0 Regge intercept, α(0)∼0.5. However, this result disagrees with the Regge trajectory determined from the energy dependence of the forward cross section, α(0)=0.30±0.03, indicating a breaking of the Regge phase-energy relation. Comparisons of KL0p→KS0p and π−p→π0n scattering data reveal substantial differences in the energy dependence of the differential cross sections. Comparisons to KN charge-exchange data then suggest that direct-channel (absorption) effects may explain the differences in πN and KN channels.
No description provided.
No description provided.
No description provided.
The polarization parameter for the reaction π−p→π0n has been measured at five incident been momenta between 1.03 and GeV/c. The results are compared with predictions of recent phase-shift analyses.
.
.
.
Results are reported based on a study of 3114 π−p events at 205 GeV/c in the National Accelerator Laboratory 30-in. bubble chamber. The measured π−p total and elastic cross sections are 24.0 ± 0.5 and 3.0 ± 0.3 mb, respectively. The elastic differential cross section has a slope of 9.0 ± 0.7 GeV−2 for 0.03≤−t≤0.6 GeV2. The average charged-particle multiplicity for the inelastic events is 8.02 ± 0.12.
No description provided.
No description provided.
Elastic diffraction scattering of π − , K − and p on protons has been measured at 25 and 40 GeV/c at the Serpukhov Proton Accelerator. Differential elastic cross sections and diffraction slopes are presented in the momentum-transfer interval 0.07–0.80 (GeV/ c ) 2 and compared with existing data at lower energies.
No description provided.
No description provided.
No description provided.
Electron-proton elastic scattering cross sections have been measured at squared four-momentum transfers q 2 of 0.67, 1.00, 1.17, 1.50, 1.75, 2.33 and 3.00 (GeV/ c ) 2 and Electron scattering angles θ e between 10° and 20° and at about 86° in the laboratory. The proton electromagnetic form factors G E p and G M p were determined. The results indicate that G E p ( q 2 ) decreases faster with increasing q 2 than G M p ( q 2 ). Quasi-elastic electron-deuteron cross sections have been determined at values of q 2 = 0.39, 0.565, 0.78, 1.0 and 1.5 (GeV/ c ) 2 and scattering angles between 10° and 12°. At q 2 = 0.565 (GeV/ c 2 data have also been taken with θ e = 35° and at q 2 = 1.0 and 1.5 (GeV/ c ) 2 with θ e = 86°. Electron-proton as well as electron-neutron scattering cross sections have been deduced by the ratio method. The theoretical uncertainties of this procedure are shown to be small by comparison of the bound with the free proton cross sections. The magnetic form factor of the neutron G M n derived from the data is consistent with the scaling law. The charge form factor of the neutron is found to be small.
Axis error includes +- 2.1/2.1 contribution (NORMALISATION ERROR).
Axis error includes +- 2.1/2.1 contribution (NORMALISATION ERROR).
Axis error includes +- 2.1/2.1 contribution (NORMALISATION ERROR).
Differential cross sections for center of mass scattering angles near 90° are presented for the reactions K ̄ ° p → π + Λ° , K ̄ ° p → π + Σ° and K L °p → K S °p in the momentum interval 1.0 to 7.5 GeV / c . The energy dependences of these cross sections are found to be equally well described by the parameterization: ( d σ d Ω ) 90° ∞ s −2 or ( d σ d Ω ) 90° ∞ exp (− bp ⊥ ) .
No description provided.
No description provided.
No description provided.
Invariant single-particle cross sections for pion and proton production in π ± p interactions at 8 and 16 GeV/ c are presented in terms of integrated distributions as functions of x , reduced rapidity ζ and p ⊥ 2 , and also in terms of double differential cross sections E d 2 σ /(d x d p ⊥ 2 ) and d ζ d p ⊥ 2 ). A comparison of π ± and π − induced reactions is made and the energy dependence is discussed. It is shown that the single-particle structure function cannot be factorized in its dependece on transverse and longitudinal momentum. For the beam-unlike pion, there is an indication for factorizability in terms of rapidity and transverse momentum in a small central region.
No description provided.
No description provided.
No description provided.