We have measured the production cross section for K s 0 in e + e − annihilation from 3.6 to 5.0 GeV center of mass energy. A substantial increase of the K s 0 yield is observed around 4 GeV in qualitative agreement with the charm hypothesis.
THE DATA GIVEN HERE AT 9.3 GEV AND ABOVE ARE REPORTED IN C. BERGER ET AL., PL 104B, 79 (1981). THE 12.0 AND 30 GEV DATA WERE TAKEN AT PETRA.
No description provided.
No description provided.
We present results for the total cross section of e + e − annihilation into two hadrons at 1.6 GeV: σ ππ = σ KK = (1.8 ± 1.1) × 10 -33 cm 2 .From these values we obtain the time-like electromagnetic form factors these mesons: | F π | 2 = 0.24 ± 0.14 and | F K | 2 = 0.46 ± 0.26.
No description provided.
None
SINGLE CHARGED PARTICLE MOMENTUM DISTRIBUTION.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
The quasi-elastic cross-sectionsσeltot and dσ/dq2 for the reactions 1) νn → μ−p and 2)\(\overline v \) → μ+n have been measured by using the data of the ν Gargamelle collaboration. 687 ν events, candidates for reaction 1), and 476\(\overline v \) events, candidates for the reactions 2), have been used for the analysis. Because the ν and\(\overline v \) interactions are on nuclei, suitable corrections for nuclear effects have been taken into account. In the framework of the «usual»V −A theory, by assuming for the axial form factor the dipolar formFA(q2)=1.23/(1 +q2/MA/2)2, our data have been fitted to the differential cross-section dσ/dq2 integrated over the ν and\(\overline v \) energy spectra and to the total cross-sectionσeltot as a function of the ν,\(\overline v \) energy to determine the best value for the parameterMA.
Measured Quasi-Elastic total cross section.
Experimental details and channel cross sections are presented for five K − deuterium bubble chamber experiments. Utilising the Fermi motion of the neutron the K − n cross sections are extracted over the c.m. energy range 1750–2200 MeV and where possible results are compared to related channels from other experiments.
CHANNEL CROSS SECTIONS FOR EACH OF THE FIVE EXPERIMENTS - NEUTRON MOTION WITHIN THE DEUTERON MEANS EACH DOES NOT CORRESPOND TO A UNIQUE C.M. ENERGY. CORRECTED FOR GLAUBER SCREENING.
FERMI MOTION OF NEUTRON USED TO EXTRACT ENERGY DEPENDENCE.
FERMI MOTION OF NEUTRON USED TO EXTRACT ENERGY DEPENDENCE.
Qausi-elastic ω production by ep scattering in the kinematic region 0.3. < Q 2 < 1.4 GeV 2 and 1.7 < W < 2.8 GeV was studied using a streamer chamber at DESY. The production angular distribution for γ V p → ω p has a strong non-peripheral component for W < 2 GeV. The ω production cross section falls by a factor of 4 as W changes from 1.7 to 2.8 GeV. In contrast the cross section for ω production with | t | < 0.5 GeV 2 is W independent between 1.7 and 2.8 GeV and for W > 2.0 GeV consistent in both W and Q 2 dependence with the predictions of a model based on one-pion exchange and diffraction.
FOR ALL T-VALUES. THE GAMMA* P TOTAL CROSS SECTION WAS TAKEN FROM A FIT TO THE DATA OF S. STEIN ET AL., PR D12, 1884 (1975). 'PPD'.
'PPD'. PERIPHERAL OMEGA PRODUCTION.
No description provided.
A study of the inclusive production of π − , η , ϱ 0 , ω ad f mesons in p p annihilation at 0.7 GeV/ c is presented. Topological and channel cross sections are determined. Longitudinal and transversal momentum distributions of non-strange mesons are studied. It is deduced that nearly 48% of all negative pions arise from the decay of η , ϱ 0 , ω and f mesons.
No description provided.
No description provided.
None
No description provided.
The reactions K L o p→K S o p, π + Λ , π + Σ o have been measured for center-of-mass energies from 1540 to 1610 MeV. Channel cross sections and coefficients of the Legendre polynomial expansion of the differential cross sections and hyperon polarizations are presented. We see no evidence in the πΛ channel for the suggested 3 2 − resonance at 1580 MeV. The cross section for the K S o p channel shows an energy dependence which is not predicted by the existing phase shift solutions based on charged kaon data.
No description provided.
No description provided.
No description provided.