Absolute measurements of proton-proton small-angle elastic scattering and total cross section at 10, 19 and 26 GeV/ c

Bellettini, G. ; Cocconi, G. ; Diddens, A.N. ; et al.
Phys.Lett. 14 (1965) 164-168, 1965.
Inspire Record 1392870 DOI 10.17182/hepdata.895

None

4 data tables

'1'. '2'. '3'.

No description provided.

No description provided.

More…

Five-pion final state in p p annihilations at 0.70 to 1.1 GeV/c

Burns, R.R. ; Condon, P.E. ; Donahue, J. ; et al.
Nucl.Phys.B 85 (1975) 337-353, 1975.
Inspire Record 1392678 DOI 10.17182/hepdata.32116

Results are reported on the reaction p p → π + π + π − π − π 0 at six lab momenta spanning the region from 0.686 to 1.098 GeV/ c . The cross section for this process drops from 20.3 ± 1.2 mb at 0.686 GeV/ c to 13 1.0 mb at 1.098 GeV/ c . Resonance production is determined by means of a model which includes Bose symmetrization, Breit-Wigner amplitudes and Bose-Einstein correlations for the like-charged pion pairs in the nonresonant part of the amplitude. The likelihood fit to the resonance channels yields about 0.8% ηππ , 12% ϱ ± πππ , 2% f πππ , 8% ω ππ , 22% ϱ ± ϱ 0 π , 13% ωϱ 0 and 9% ω f with errors on the order of a few percent. Several percent A 1 ± ππ and X(1440) π were also needed to obtain good fits. The ϱ 0 πππ and ϱ 0 ϱ 0 π channels as well as A 2 ππ and A 1 0 ππ are consistent with zero. Reasonable fits to the mass distributions are obtained. Production angular distributions are found to be essentially uniform. The angular correlations between pion pairs are approximately fit by the simple model of resonance production with Bose symmetrization.

2 data tables

Axis error includes +- 0.0/0.0 contribution.

Axis error includes +- 0.0/0.0 contribution.


Analysis of $\bar{p}p\to K^+ K^- \pi^+ \pi^-$ around 1 GeV/c

Price, L.R. ; Burns, R.R. ; Condon, P.E. ; et al.
Nucl.Phys.B 85 (1975) 326-336, 1975.
Inspire Record 1392681 DOI 10.17182/hepdata.32088

Approximately 100 000 four-prong antiproton annihilations in hydrogen were measured. A clean, unbiased sample of 842 K + K − π + π − events was obtained. This reaction is dominated by K ∗ (∼45%) and ϱ 0 (∼20%) production, with smaller amounts of A 2 0 (∼15%) and ϕ (∼5%) production. 25% of the reactions involved double resonance production. No significant three-body resonance production is observed.

1 data table

ERRORS INCLUDE SYSTEMATICS.


Resonance production by 8 GeV/c positive pions on protons

The Aachen-Berlin-CERN collaboration Deutschmann, M. ; Schulte, R. ; Weber, H. ; et al.
Phys.Lett. 12 (1964) 356-360, 1964.
Inspire Record 1389790 DOI 10.17182/hepdata.30824

None

1 data table

Cross sections based on total PI+ P cross section =25.8 mb (Vondardel, PRL 8, 173 (1962)).


Observation of the heavy nucleon isobar $N^{∗}_\frac1{2}(3690)$

Bartke, J. ; Czyżewski, O. ; Danysz, J.A. ; et al.
Phys.Lett.B 24 (1967) 118-120, 1967.
Inspire Record 1389636 DOI 10.17182/hepdata.29588

The analysis of the eight-prong interactions of 8 GeV/ c π + with protons indicates the existence of the new heavy nucleon isobar with the mass M = 3.69 GeV and the isospin T = 1 2 .

1 data table

No description provided.


The transverse and longitudinal cross sections for electroproduction of pions near the Δ(1236)-isobar

Bartel, W. ; Dudelzak, B. ; Krehbiel, H. ; et al.
Phys.Lett.B 27 (1968) 660-662, 1968.
Inspire Record 1389642 DOI 10.17182/hepdata.29204

The reaction e + p → e ′+ N ∗ was studied for four momentum transfers up to 2.34 (GeV/ c ) 2 in the region of the 1236 MeV isobar. An analysis of the data in terms of the cross sections σ T and σ L for the absorption of transverse and longitudinal photons is given for invariant masses of the final pion nucleon system W =1.220 GeV and W =1.350 GeV.

3 data tables

Total errors are presented.

Total errors are presented.

Total errors are presented.


Total cross-section for n-p and n-d scattering at 10 GeV/c neutron momentum

Engler, J. ; Horn, K. ; König, J. ; et al.
Phys.Lett.B 27 (1968) 599-601, 1968.
Inspire Record 1389110 DOI 10.17182/hepdata.752

The total neutron cross-sections were measured with high precision for hydrogen and deuterium. At an average neutron momentum of 10 GeV/c we obtained σ T (np)=39.5±0.5 mb and σ T (nd)=73.3±1.1 mb. These values are in excellent agreement with p-p and p-d total cross sections. No energy dependence was found for n-p cross section between 4 and 10 GeV/c.

3 data tables

No description provided.

No description provided.

No description provided.


Study of the $e^+e^-\to K^+K^-$ reaction in the energy range from 2.6 to 8.0 GeV

The BaBar collaboration Lees, J.P. ; Poireau, V. ; Tisserand, V. ; et al.
Phys.Rev.D 92 (2015) 072008, 2015.
Inspire Record 1383130 DOI 10.17182/hepdata.73784

The $e^+e^-\to K^+K^-$ cross section and charged-kaon electromagnetic form factor are measured in the $e^+e^-$ center-of-mass energy range ($E$) from 2.6 to 8.0 GeV using the initial-state radiation technique with an undetected photon. The study is performed using 469 fb$^{-1}$ of data collected with the BABAR detector at the PEP-II $e^+e^-$ collider at center-of-mass energies near 10.6 GeV. The form factor is found to decrease with energy faster than $1/E^2$, and approaches the asymptotic QCD prediction. Production of the $K^+K^-$ final state through the $J/\psi$ and $\psi(2S)$ intermediate states is observed. The results for the kaon form factor are used together with data from other experiments to perform a model-independent determination of the relative phases between single-photon and strong amplitudes in $J/\psi$ and $\psi(2S)\to K^+K^-$ decays. The values of the branching fractions measured in the reaction $e^+e^- \to K^+K^-$ are shifted relative to their true values due to interference between resonant and nonresonant amplitudes. The values of these shifts are determined to be about $\pm5\%$ for the $J/\psi$ meson and $\pm15\%$ for the $\psi(2S)$ meson.

1 data table

The $K^+K^-$ invariant-mass interval ($M_{K^+K^-}$), number of selected events ($N_{\rm sig}$) after background subtraction, detection efficiency ($\varepsilon$), ISR luminosity ($L$), measured $e^+e^-\to K^+K^-$ cross section ($\sigma_{K^+K^-}$), and the charged-kaon form factor ($|F_K|$). For the number of events and cross section. For the form factor, we quote the combined uncertainty. For the mass interval 7.5 - 8.0 GeV/$c^2$, the 90$\%$ CL upper limits for the cross section and form factor are listed.


Observation of $Z_c(3900)^{0}$ in $e^+e^-\to\pi^0\pi^0 J/\psi$

The BESIII collaboration Ablikim, M. ; Achasov, M.N. ; Ai, X.C. ; et al.
Phys.Rev.Lett. 115 (2015) 112003, 2015.
Inspire Record 1377204 DOI 10.17182/hepdata.73771

Using a data sample collected with the BESIII detector operating at the BEPCII storage ring, we observe a new neutral state $Z_c(3900)^{0}$ with a significance of $10.4\sigma$. The mass and width are measured to be $3894.8\pm2.3\pm3.2$ MeV/$c^2$ and $29.6\pm8.2\pm8.2$~MeV, respectively, where the first error is statistical and the second systematic. The Born cross section for $e^+e^-\to\pi^0\pi^0 J/\psi$ and the fraction of it attributable to $\pi^0 Z_c(3900)^{0}\to\pi^0\pi^0 J/\psi$ in the range $E_{cm}=4.19-4.42$ GeV are also determined. We interpret this state as the neutral partner of the four-quark candidate $Z_c(3900)^\pm$.

1 data table

Efficiencies, yields, $R=\frac{\sigma(e^+e^-\to\pi^0 Z_c(3900)^{0}\to\pi^0\pi^0 J/\psi)}{\sigma(e^+e^-\to\pi^0\pi^0 J/\psi)}$, and $\pi^0\pi^0 J/\psi$ Born cross sections at each energy point. For $N(Z_c^0)$ and $N(\pi^0\pi^0 J/\psi)$ errors and upper limits are statistical only. For $R$ and $\sigma_{\rm Born}$, the first errors and statistical and second errors are systematic. The statistical uncertainties on the efficiencies are negligible. Upper limits of $R$ (90$\%$ confidence level) include systematic errors.


Measurement of $e^+e^- \to \gamma\chi_{cJ}$ via initial state radiation at Belle

The Belle collaboration Han, Y.L. ; Wang, X.L. ; Yuan, C.Z. ; et al.
Phys.Rev.D 92 (2015) 012011, 2015.
Inspire Record 1376480 DOI 10.17182/hepdata.73745

The process $e^+e^- \to \gamma\chi_{cJ}$ ($J$=1, 2) is studied via initial state radiation using 980 fb$^{-1}$ of data at and around the $\Upsilon(nS)$ ($n$=1, 2, 3, 4, 5) resonances collected with the Belle detector at the KEKB asymmetric-energy $e^+e^-$ collider. No significant signal is observed except from $\psi(2S)$ decays. Upper limits on the cross sections between $\sqrt{s}=3.80$ and $5.56~{\rm GeV}$ are determined at the 90% credibility level, which range from few pb to a few tens of pb. We also set upper limits on the decay rate of the vector charmonium [$\psi(4040$), $\psi(4160)$, and $\psi(4415)$] and charmoniumlike [$Y(4260)$, $Y(4360)$, and $Y(4660)$] states to $\gamma\chi_{cJ}$.

3 data tables

Upper limits on the $e^+e^-\to \gamma\chi_{cJ}$ cross sections.

Upper limits on $\Gamma_{ee} \times \mathcal{B}$ at the 90$\%$ C.L.

Upper limits on branching fractions $\mathcal{B}(R \to \gamma \chi_{cJ})$ at the 90$\%$ C.L.