We report on measurements by the E864 experiment at the BNL-AGS of the yields of light nuclei in collisions of Au(197) with beam momentum of 11.5 A GeV/c on targets of Pb(208) and Pt(197). The yields are reported for nuclei with baryon number A=1 up to A=7, and typically cover a rapidity range from y(cm) to y(cm)+1 and a transverse momentum range of approximately 0.1 < p(T)/A < 0.5 GeV/c. We calculate coalescence scale factors B(A) from which we extract model dependent source dimensions and collective flow velocities. We also examine the dependences of the yields on baryon number, spin, and isospin of the produced nuclei.
10 pct most central collisions.
10 to 38 pct most central collisions.
38 to 66 pct most central collisions.
A strangelet search in Si+Pt and Au+Pt collisions at alternating-gradient synchrotron (AGS) energies, using a focusing spectrometer, sensitive to mass per charge of 3-14 GeV/c2 was conducted during the 1992 and 1993 heavy ion runs at the AGS. The null results thereof are presented as upper limits on the invariant production cross section, in the range of 10−5-10−4 mb c3/GeV2, and model dependent sensitivity limits in the range of 10−7-10−5 per collision. Measurements of the production cross sections of several nonstrange nuclear systems, from p to Be7 and Li8, the background of the strangelet search, are also presented.
No description provided.
Recently, highly relativistic Au beams have become available at the Brookhaven National Laboratory, Alternating Gradient Synchrotron. Inclusive production cross sections for composite particles, d, t, He3, and He4, in 11.5A GeV/c Au+Pt collisions have been measured using a beam line spectrometer. For comparison, composite particle production was also measured in Si+Pt and p+Pt collisions at similar beam momenta per nucleon (14.6A GeV/c and 12.9 GeV/c, respectively). The projectile dependence of the production cross section for each composite particle has been fitted to Aprojα. The parameter α can be described by a single function of the mass number and the momentum per nucleon of the produced particle. Additionally, the data are well described by momentum-space coalescence. Comparisons with similar analysis of Bevalac A+A data are made. The coalescence radii extracted from momentum-space coalescence fits are used to determine reaction volumes (‘‘source size’’) within the context of the Sato-Yazaki model.
No description provided.
No description provided.
No description provided.
The results of intranuclear cascade calculations (ideal gas with two-body collisions and no mean field), complemented by a simple percolation procedure, are compared with experimental data on protons and light nuclear fragments (d, t, He3, and He4) measured in 400 and 800 MeV/nucleon Ne+Nb collisions using a large solid angle detector. The model reproduces quite well global experimental observables like nuclear fragment multiplicity distributions or production cross sections, and nuclear fragment to proton ratios. For rapidity distributions the best agreement occurs for peripheral reactions. Transverse momentum analysis confirms once again that the cascade, although being a microscopic approach, gives too small a collective flow, the best agreement being reached for Z=2 nuclear fragments. Nevertheless these comparisons are encouraging for further improvements of the model. Moreover, such an approach is easy to extend to any other models that could calculate the nucleon phase space distribution after the compression stage of the reaction, when light nuclear fragments emitted at large angles are constructed from percolation.
No description provided.
No description provided.