The production of antideuterons has been observed in electron-positron annihilations at center-of-mass energies around 10 GeV. Antideuterons have been identified unambiguously by their energy loss in the drift chamber, their time-of-flight and the pattern of their energy deposition in the shower counters of the ARGUS detector. The production rate in the momentum range (0.6−1.8) GeV/ c is (1.6 −0.7 +1.0 ) × 10 −5 per hadronic event.
Results from 6 antideuterons detected (3 from UPSI(2S), 2 from (IS) and 1 from (4S)).
No description provided.
Inclusive particle production cross-sections have been measured at the\(Sp\bar pS\) collider using the UA2 detector in various ranges of transverse momentum (PT) and pseudo-rapidity (η). Cross-section measurements are presented forπ0 production (PT≦15 GeV/c, |η|≦0.85 andPT≦40 GeV/c, 1.0≦|η|≦1.8), for η meson production (3≦PT≦6 GeV/c, |η|≦0.85) and for charged particle production (PT≦10 GeV/c, 1.0≦|η|≦1.8). Results are compared with the predictions of QCD calculations.
No description provided.
No description provided.
No description provided.
We have studied inclusive production of KS0, Λ, and Λ¯ particles in 20-GeV γp interactions and have found features similar to those observed in both hadronic and leptonic interactions. The production cross sections, charged-particle multiplicities, and average Λ polarization are reported. Inclusive distributions of x and pT are shown and discussed in terms of quark fragmentation models. Production cross sections for K*(890) and Σ*(1385) are also reported.
No description provided.
No description provided.
No description provided.
The production properties ofKs0,\(\bar \Lambda\) andK+p interactions at 32 GeV/c are investigated using the final statistics of the experiment. We present total and semi-inclusive cross sections and aver-age multiplicities. Estimates are given of the diffractive dissociation contributions to total and differential cross sections. Thex-,pT−, and transverse mass dependence of inclusive and semi-inclusive distributions is discussed as well as properties of “prompt”Ks0's. The ratio of “prompt”K890+ (K8900) to “prompt”K0 cross sections is measured to be 1.03±0.12 (0.98±0.17). From a comparison of\(\bar \Lambda\) production inK±p interactions at 32 GeV/c, we estimate a strange sea-quark suppression of 0.26 ±0.02. The double differential cross sections ofKs0's is studied as a function of Feynman-x andpT2, and a Triple-Regge fit performed. The data are compared in detail to versions of the Lund-model for low-pT hadronic collisions.
No description provided.
No description provided.
No description provided.
Highly inelastic processes in hadron-nucleus reactions at several GeV have been studied by measuring multi-particle emission in the target-rapidity region. Events with no leading particle(s) but with high multiplicities were observed up to 4 GeV. Proton spectra from such events were well reproduced with a single-moving-source model, which implied possible formation of a local source. The number of nucleons involved in the source was estimated to be (3–5)A 1 3 from the source velocity and the multiplicity of emitted protons. In those processes the incident energy flux seemed to be deposited totally or mostly (>62;75%) in the target nucleus to form the local source. The cross sections for the process were about 30% of the geometrical cross sections, with little dependence on incident energies up to 4 GeV and no dependence on projectiles (pions or protons). The E 0 parameter in the invariant-cross-section formula E d 3 σ /d p 3 = A exp (− E / E 0 ) for protons from the source increases with incident energy from 1 to 4 GeV/ c , but seems to saturate above 10 GeV at a value E 0 = 60–70 MeV. Three components in the emitted nucleon spectra were observed which would correspond to three stages of the reaction process: primary, pre-equilibrium and equilibrium.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
BEAM ERROR D(P)/P = 0.300 PCT. X ERROR D(EKIN)/EKIN = 8.00 PCT.
In an experiment with the 30-inch Hybrid Spectrometer at Fermilab we have obtained the inclusive and semi-inclusive production cross sections of the ϱ0 meson using a conventional background subtraction technique. Production cross sections for the ϱ0 are derived as a function of the Feynman scaling variablex, and the transverse variablespt2 andEt=(pt2+M2)1/2. The longitudinal distributions are compared with the (1−x) dependence of the proton and meson valence quark structure functions, using various forms of recombination and fragmentation models. The transverse distributions are compared with thermodynamic models. We give density matrix elements for the ϱ0 production from pions in the extreme forward region.
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
New results on the inclusive and semi-inclusive production of π + mesons and protons in the whole phase space are given for about 2.2 · 10 4 inelastic p p interactions at 22.4 GeV/ c . A method of statistical separation for spectra of particles of the same charge which are produced in CP -symmetrical reactions is discussed in detail. Experimental data are compared with quark-parton model predictions.
No description provided.
NON-ANNIHILATION EVENTS ONLY.
No description provided.
Measurements of the invariant cross sections for the reaction p(400 GeV)+(Li6, Be,C,Al,Cu,Ta)→(π±, K±)+X at laboratory angles from 70° to 160° are reported. Upper limits for p¯ production are given. Comparisons of the data are made using several scaling variables. NUCLEAR REACTIONS Inclusive cross section; 400 GeV incident protons; Li6, Be, C, Al, Cu, Ta targets; production of π, K, and p¯; lab angles 70° to 160°.
No description provided.
No description provided.
No description provided.
Measurements of the invariant cross sections for the reaction p(400 GeV)+(Li6, Be,C,Al,Cu,Ta)→(d, t, He3, He4)+X at laboratory angles of 70, 90, 118, 137, and 160° are reported. Comparisons are made using several scaling variables. NUCLEAR REACTIONS Inclusive cross section; 400 GeV incident protons; Li6, Be, C, Al, Cu, Ta targets; production of d, t, He3, He4; Lab angles 70°, 90°, 118°, 137°, and 160°.
No description provided.
No description provided.
No description provided.