The elastic cross section for proton proton scattering at 6 GeV c was measured using a 70% polarized beam and a 75% polarized target at the Argonne ZGS. In the range P ⊥ 2 = 0.5 → 2.0( GeV c ) 2 we obtained small error measurements for the ↑↑, ↓↓ and ↑↓ initial spin states perpendicular to the scattering plane. At P ⊥ 2 = 0.5 we also measured the recoil spin and found that the 5 different cross sections were very unequal.
No description provided.
No description provided.
An experiment was done using an accelerated polarized proton beam and a polarized proton target. The elastic cross section for proton-proton scattering at 6.0 GeV/c and P⊥2=0.5−1.6 (GeV/c)2 was measured in the spin states ↑ ↑, ↓ ↓, and ↑ ↓ perpendicular to the scattering plane. The cross sections were found to be unequal by up to a factor of 2.
No description provided.
An experiment was done using the new accelerated polarized proton beam at the Argonne National Laboratory zero-gradient synchrotron and a polarized proton target. The total cross section for proton-proton scattering at 3.5 GeV/c was measured in the spin states ↑↑ and ↑↓ perpendicular to the beam direction. The two cross sections were found to be equal within the experimental error of ±5%.
TOTAL CROSS SECTION DIFFERENCE FOR PURE TRANSVERSE SPIN STATES.
A graphite-plate spark chamber has been used to analyze the polarization of protons recoiling from π−−p scattering. The observations were made at 90° (c.m. system) pion scattering angle for seven incident pion energies between 500 and 940 Mev, at 120° or 135° for five energies in this interval, and also at 75° for 500 Mev only. The results are compared with predictions of several models used to explain the maxima in the π−−p scattering cross section. Qualitative arguments show that the energy intervals between these maxima are not completely dominated by neighboring single-state resonances. Phase shifts found to be large in scattering also seem to be large in polarization.
No description provided.
No description provided.
No description provided.