Final data measured with the EMC forward spectrometer are presented on the production of forward charged hadrons in μp and μd scattering at incident beam energies between 100 and 280 GeV. The large statistic of 373 000 events allows a study of the semi-inclusive hadron production as a function ofz,pT2 and 〈pT2〉 in smallQ2,xBj andW bins. Charge multiplicity ratios and differences as a function ofz andxBj are given forp, d andn-targets. From the differences of charge multiplicities the ratio of the valence quark distributions of the protondv(x)/uv(x) is determined for the first time in charged lepton scattering. The Gronau et al. sum rule is tested, the measured sum being 0.31±0.06 stat. ±0.05 syst., compared with the theoretical expectation of 2/7≈0.286. The measured sum corresponds to an absolute value of the ratio of thed andu quark charge of 0.44±0.10 stat.±0.08 syst.
No description provided.
No description provided.
No description provided.
We present the structure function ratiosF2He/F2D,F2C/F2D andF2Ca/F2D measured in deep inelastic muon-nucleus scattering at an incident muon momentum of 200 GeV. The kinematic range 0.0035
No description provided.
No description provided.
No description provided.
Data on multiplicities of charged particles produced in proton-nucleus and nucleus-nucleus collisions at 200 GeV per nucleon are presented. It is shown that the mean multiplicity of negative particles is proportional to the mean number of nucleons participating in the collision both for nucleus-nucleus and proton-nucleus collisions. The apparent consistency of pion multiplicity data with the assumption of an incoherent superposition of nucleon-nucleon collisions is critically discussed.
No description provided.
No description provided.
No description provided.
None
No description provided.
CONTINUUM MUONS ORIGINATE MAINLY FROM VECTOR MESON DECAYS, SEMI-LEPTONIC DECAYS OF D DBAR PAIRS AND FROM DRELL-YAN MECHANISM.
No description provided.
Low mass muon pair production at high P T and low X F studied in pU, OU and SU 200 GeV per nucleon react ions. When energy density or projectile mass are increased, φ production is enhanced as compared with the yield of muon pairs in the mass continuum (1.7< M μμ < 2.4 GeV/ c 2 ), whereas the production of ω and ϱ, experimentally unresolved, remains approximately constant. This φ enhancement is in agreement with predictions based on quark-gluon plasma formation and, together with the previously reported J/Ψ suppression, puts severe constraints on a purely hadronic description of nucleus-nucleus collisions.
The cross sections are parametrized as A**POWER.
Experimental results obtained at the CERN Super Proton Synchrotron on the structure-function ratio F2n/F2p in the kinematic range 0.004
No description provided.
The production of μ−e+ dileptons by muon neutrinos is studied in a high-statistics bubble-chamber experiment. The experiment consisted of exposing the Fermilab 15-ft bubble chamber filled with a heavy Ne-H2 mix to a wideband neutrino beam. In a total sample of 146 700±11 700 charged-current interactions, 461 events with an e+(Pe+>300 MeV/c) and a μ− are observed. The rate for μ−e+ dilepton production in measured to be (0.42±0.06)%. The energy dependence of this rate is presented. The kinematic distributions for the μ−e+ events are consistent with charm production and subsequent semileptonic decay. A total of 60 KS0 and 31 Λ0 decays were observed in the μ−e+ event sample. The measured rates for neutral-strange-particle production are 0.78±0.12 K0K¯0's and 0.19±0.04 Λ0's per μ−e+ event. Finally, rates for Λc+, D0, and D+ production in charged-current νμ interactions are derived. They are found to be (4−2+10)%, (1.7−0.7+0.5)%, and (1.3−0.5+0.4)%, respectively.
No description provided.
No description provided.
No description provided.
We report a measurement of the electroweak parameters sin2θw and ϱ based on the ratios of neutral current to charged current events measured in the Fermilab narrow-band neutrino beam at energies of 30–240 GeV. The data are fully corrected for radiative effects, heavy-quark production, and other effects. The best value for sin2θw obtained, sin2θw=0.239±0.011, is consistent with the most recent values fromW andZ production, as well as from other neutrino experiments.
No description provided.
No description provided.
The TPC/Two-Gamma Collaboration has measured the inclusive cross section for production of charmed D ∗± mesons in photon-photon collisions. The reaction utilized was e + e - →e + e - D ∗± X, with D ∗± →D O π +- , D O →K -+ π ± , and either zero or one outgoing e ± detected. The result, σ(e + e - → e + e - D ∗± X) = 74±26±19 pb , is in agreement with the quark parton mo del prediction for e + e - → e + e - c c , combined with a Lund model for the hadronization of the charmed quarks.
No description provided.
No description provided.
The structure of the nucleon is studied by means of deep-inelastic neutrino-nucleon scattering at high energies through the weak neutral current. The neutrino-nucleon scattering events were observed in a 340-metric-ton fine-grained calorimeter exposed to a narrow-band (dichromatic) neutrino beam at Fermilab. The data sample after analysis cuts consists of 9200 charged-current and 3000 neutral-current neutrino and antineutrino events. The neutral-current valence and sea nucleon structure functions are extracted from the x distribution reconstructed from the measured angle and energy of the recoil-hadron shower and the incident narrow-band neutrino-beam energy. They are compared to those extracted from charged-current events analyzed as neutral-current events. It is shown that the nucleon structure is independent of the type of neutrino interaction, which confirms an important aspect of the standard model. The data are also used to determine the value of sin2θW=0.238±0.013±0.015±0.010 for a single-parameter fit, where the first error is from statistical sources, the second from experimental systematic errors, and the third from estimated theoretical errors.
Neutral-current valence-quark distribution referenced to Q**2 = 10 GeV**2. The first systematic error is for the hadronic shower angle resolution degraded (improved) by 10 pct and the second is the change if the data are analysed with X values reduced by 5 pct.
Neutral-current sea-quark distribution referenced to Q**2 = 10 GeV**2. The first systematic error is for the hadronic shower angle resolution degraded (improved) by 10 pct and the second is the change if the data are analysed with X values reduced by 5 pct.
Charged-current valence-quark distribution referenced to Q**2 = 10 GeV**2. The first systematic error is for the hadronic shower angle resolution degraded (improved) by 10 pct and the second is the change if the data are analysed with X values reduced by 5 pct.