An experiment performed at Fermilab used double-arm calorimeter triggers to study di-jet production by 400 GeV protons and 200 GeVπ− mesons incident on liquid hydrogen. The observed ratio of positive to negative leading particles in the jets was compared forpp andπp production using a tree level parton scattering model. The results are moderately sensitive to the form of the pion gluon distribution function and yieldx g(x)⋍(1−x)2.75±0.40±0.75.
The invariant cross section for production of jet pairs in 400-GeV/c pp interactions has been measured as a function of pT in the pT range 4 to 9 GeV/c. The results are in good agreement with predictions of perturbative QCD models.
We present the first measurement of the form factor ratios g1/f1 (direct axial-vector to vector), g2/f1 (second class current) and f2/f1 (weak magnetism) for the decay Xi0 -> Sigma+ e- anti-nu/e using the KTeV (E799) beam line and detector at Fermilab. From the Sigma+ polarization measured with the decay Sigma+ -> p pi0 and the e- - anti-nu/e correlation, we measure g1/f1 to be 1.32 +0.21-0.17(stat.) +/- 0.05(syst.), assuming the SU(3)f (flavor) values for g2/f1 and f2/f1. Our results are all consistent with exact SU(3)f symmetry.
The polarization of neutral Cascade and anti-Cascade hyperons produced by 800 GeV/c protons on a BeO target at a fixed targeting angle of 4.8 mrad is measured by the KTeV experiment at Fermilab. Our result of 9.7% for the neutral Cascade polarization shows no significant energy dependence when compared to a result obtained at 400 GeV/c production energy and at twice our targeting angle. The polarization of the neutral anti-Cascade is measured for the first time and found to be consistent with zero. We also examine the dependence of polarization on transverse production momentum.
This Letter presents measurements of the nucleon structure function F2(x,Q2) based on the deep-inelastic scattering of 215- and 93-GeV muons in the iron multimuon spectrometer at Fermilab. With use of a lowest-order QCD calculation, a value of ΛLO=230±40(stat.)±80(syst.) MeV/c is found.
The polarization and Q2 dependence of muoproduced ψ→μ+μ− have been analyzed in a magnetized-steel calorimeter at Fermilab. The reaction γVN→ψN is found to be helicity conserving. Even after allowance for possible Q2 dependence of the decay angular distribution, the ψ muoproduction cross section falls more steeply in Q2 than predicted by ψ dominance.
The first prompt photon measurement from the CDF experiment at the Fermilab pp¯ Collider is presented. Two independent methods are used to measure the cross section: one for high transverse momentum (PT) and one for lower PT. Comparisons to various theoretical calculations are shown. The cross section agrees qualitatively with QCD calculations but has a steeper slope at low PT.
The dijet invariant mass distribution has been measured in the region between 120 and 1000 GeV/c2, in 1.8-TeV pp¯ collisions. The data sample was collected with the Collider Detector at Fermilab (CDF). Data are compared to leading order (LO) and next-to-leading order (NLO) QCD calculations using two different clustering cone radii R in the jet definition. A quantitative test shows good agreement of data with the LO and NLO QCD predictions for a cone of R=1. The test using a cone of R=0.7 shows less agreement. The NLO calculation shows an improvement compared to LO in reproducing the shape of the spectrum for both radii, and approximately predicts the cone size dependence of the cross section.
An analysis of high-transverse-momentum electrons using data from the Collider Detector at Fermilab (CDF) of p¯p collisions at s=1800 GeV yields values of the production cross section times branching ratio for W and Z0 bosons of σ(p¯p→WX→eνX)=2.19±0.04(stat)±0.21(syst) nb and σ(p¯p→Z0X→e+e−X)=0.209±0.013(stat)±0.017(syst) nb. Detailed descriptions of the CDF electron identification, background, efficiency, and acceptance are included. Theoretical predictions of the cross sections that include a mass for the top quark larger than the W mass, current values of the W and Z0 masses, and higher-order QCD corrections are in good agreement with these measured values.
We have measured the polarization of Λ and Λ hyperons produced by 800 GeV protons on a Be target at a fixed targeting angle of 4.8 mrad. Comparison with previous data at 400 GeV production energy and twice the targeting angle shows no significant energy dependence for the Λ polarization. This is in striking contrast to the energy dependence found for σ + and Ξ − polarizations. We find no evidence for Λ polarization at 800 GeV.