This paper presents a search for physics beyond the Standard Model targeting a heavy resonance visible in the invariant mass of the lepton-jet system. The analysis focuses on final states with a high-energy lepton and jet, and is optimised for the resonant production of leptoquarks-a novel production mode mediated by the lepton content of the proton originating from quantum fluctuations. Four distinct and orthogonal final states are considered: $e$+light jet, $μ$+light jet, $e$+$b$-jet, and $μ$+$b$-jet, constituting the first search at the Large Hadron Collider for resonantly produced leptoquarks with couplings to electrons and muons. Events with an additional same-flavour lepton, as expected from higher-order diagrams in the signal process, are also included in each channel. The search uses proton-proton collision data from the full Run 2, corresponding to an integrated luminosity of 140 fb$^{-1}$ at a centre-of-mass energy of $\sqrt{s} = 13$ TeV, and from a part of Run 3 (2022-2023), corresponding to 55 fb$^{-1}$ at $\sqrt{s} = 13.6$ TeV. No significant excess over Standard Model predictions is observed. The results are interpreted as exclusion limits on scalar leptoquark ($\tilde{S}_1$) production, substantially improving upon previous ATLAS constraints from leptoquark pair production for large coupling values. The excluded $\tilde{S}_1$ mass ranges depend on the coupling strength, reaching up to 3.4 TeV for quark-lepton couplings $y_{de} = 1.0$, and up to 4.3 TeV, 3.1 TeV, and 2.8 TeV for $y_{sμ}$, $y_{be}$, and $y_{bμ}$ couplings set to 3.5, respectively.
Data (dots) and post-fit SM distribution (histograms) of m<sub>ℓj</sub> in (a, b) SR-1L-ej and (c, d) SR-2L-ej of the e+light-jet channel obtained by a CR+SR background-only fit for Run 2 and Run 3, respectively. The lower panel shows the ratio of observed data to the total post- and pre-fit SM prediction. The last bin includes the overflow. Uncertainties in the background estimates include both the statistical and systematic uncertainties, with correlations between uncertainties taken into account. The dashed lines show the predicted yields for two benchmark signal models corresponding to S̃<sub>1</sub> (m, y<sub>de</sub>) = (2.0 TeV, 1.0) and S̃<sub>1</sub> (m, y<sub>de</sub>) = (3.0 TeV, 1.0), respectively. Note: the values in the table are normalized by the width of corresponding bin
Data (dots) and post-fit SM distribution (histograms) of m<sub>ℓj</sub> in (a, b) SR-1L-ej and (c, d) SR-2L-ej of the e+light-jet channel obtained by a CR+SR background-only fit for Run 2 and Run 3, respectively. The lower panel shows the ratio of observed data to the total post- and pre-fit SM prediction. The last bin includes the overflow. Uncertainties in the background estimates include both the statistical and systematic uncertainties, with correlations between uncertainties taken into account. The dashed lines show the predicted yields for two benchmark signal models corresponding to S̃<sub>1</sub> (m, y<sub>de</sub>) = (2.0 TeV, 1.0) and S̃<sub>1</sub> (m, y<sub>de</sub>) = (3.0 TeV, 1.0), respectively. Note: the values in the table are normalized by the width of corresponding bin
Data (dots) and post-fit SM distribution (histograms) of m<sub>ℓj</sub> in (a, b) SR-1L-ej and (c, d) SR-2L-ej of the e+light-jet channel obtained by a CR+SR background-only fit for Run 2 and Run 3, respectively. The lower panel shows the ratio of observed data to the total post- and pre-fit SM prediction. The last bin includes the overflow. Uncertainties in the background estimates include both the statistical and systematic uncertainties, with correlations between uncertainties taken into account. The dashed lines show the predicted yields for two benchmark signal models corresponding to S̃<sub>1</sub> (m, y<sub>de</sub>) = (2.0 TeV, 1.0) and S̃<sub>1</sub> (m, y<sub>de</sub>) = (3.0 TeV, 1.0), respectively. Note: the values in the table are normalized by the width of corresponding bin
This article reports on a search for dijet resonances using $132$ fb$^{-1}$ of $pp$ collision data recorded at $\sqrt{s} = 13$ TeV by the ATLAS detector at the Large Hadron Collider. The search is performed solely on jets reconstructed within the ATLAS trigger to overcome bandwidth limitations imposed on conventional single-jet triggers, which would otherwise reject data from decays of sub-TeV dijet resonances. Collision events with two jets satisfying transverse momentum thresholds of $p_{\textrm{T}} \ge 85$ GeV and jet rapidity separation of $|y^{*}|<0.6$ are analysed for dijet resonances with invariant masses from $375$ to $1800$ GeV. A data-driven background estimate is used to model the dijet mass distribution from multijet processes. No significant excess above the expected background is observed. Upper limits are set at $95\%$ confidence level on coupling values for a benchmark leptophobic axial-vector $Z^{\prime}$ model and on the production cross-section for a new resonance contributing a Gaussian-distributed line-shape to the dijet mass distribution.
Observed $m_{jj}$ distribution for the J50 signal region, using variable-width bins and the analysis selections. The background estimate corresponds to the ansatz fit, integrated over each bin.
Observed $m_{jj}$ distribution for the J100 signal region, using variable-width bins and the analysis selections. The background estimate corresponds to the ansatz fit, integrated over each bin.
Observed 95% $\text{CL}_\text{S}$ upper limits on the production cross-section times acceptance times branching ratio to jets, $\sigma \cdot A \cdot \text{BR}$, of Gaussian-shaped signals of 5%, 10%, and 15% width relative to their peak mass, $m_G$. Also included are the corresponding expected upper limits predicted for the case the $m_{jj}$ distribution is observed to be identical to the background prediction in each bin and the $1\sigma$ and $2\sigma$ envelopes of outcomes expected for Poisson fluctuations around the background expectation. Limits are derived from the J50 signal region.