Yields for J/psi production in Cu+Cu collisions at sqrt (s_NN)= 200 GeV have been measured by the PHENIX experiment over the rapidity range |y| < 2.2 at transverse momenta from 0 to beyond 5 GeV/c. The invariant yield is obtained as a function of rapidity, transverse momentum and collision centrality, and compared with results in p+p and Au+Au collisions at the same energy. The Cu+Cu data provide greatly improved precision over existing Au+Au data for J/psi production in collisions with small to intermediate numbers of participants, providing a key constraint that is needed for disentangling cold and hot nuclear matter effects.
J/psi-->e+e- invariant yield in Cu+Cu collisions as a function of p_T at mid-rapidity for the 0-20 centrality range. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
J/psi-->e+e- invariant yield in Cu+Cu collisions as a function of p_T at mid-rapidity for the 20-40 centrality range. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
J/psi-->e+e- invariant yield in Cu+Cu collisions as a function of p_T at mid-rapidity for the 40-60 centrality range. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
Measurements of single-, double-, and triple-differential cross-sections are presented for boosted top-quark pair-production in 13 $\text{TeV}$ proton-proton collisions recorded by the ATLAS detector at the LHC. The top quarks are observed through their hadronic decay and reconstructed as large-radius jets with the leading jet having transverse momentum ($p_{\text{T}}$) greater than 500 GeV. The observed data are unfolded to remove detector effects. The particle-level cross-section, multiplied by the $t\bar{t} \rightarrow W W b \bar{b}$ branching fraction and measured in a fiducial phase space defined by requiring the leading and second-leading jets to have $p_{\text{T}} > 500$ GeV and $p_{\text{T}} > 350$ GeV, respectively, is $331 \pm 3 \text{(stat.)} \pm 39 \text{(syst.)}$ fb. This is approximately 20$\%$ lower than the prediction of $398^{+48}_{-49}$ fb by Powheg+Pythia 8 with next-to-leading-order (NLO) accuracy but consistent within the theoretical uncertainties. Results are also presented at the parton level, where the effects of top-quark decay, parton showering, and hadronization are removed such that they can be compared with fixed-order next-to-next-to-leading-order (NNLO) calculations. The parton-level cross-section, measured in a fiducial phase space similar to that at particle level, is $1.94 \pm 0.02 \text{(stat.)} \pm 0.25 \text{(syst.)}$ pb. This agrees with the NNLO prediction of $1.96^{+0.02}_{-0.17}$ pb. Reasonable agreement with the differential cross-sections is found for most NLO models, while the NNLO calculations are generally in better agreement with the data. The differential cross-sections are interpreted using a Standard Model effective field-theory formalism and limits are set on Wilson coefficients of several four-fermion operators.
Fiducial phase-space cross-section at particle level.
$p_{T}^{t}$ absolute differential cross-section at particle level.
$|y^{t}|$ absolute differential cross-section at particle level.
We have measured the forward production spectra of various neutral particles produced by π−, K−, p¯, and p at 200 GeV/c, and by π− at 290 GeV/c incident on a Be target. The salient features of these measurements are (1) copious production of KSo at large Feynman xL for incident π− and K−, (2) production of roughly equal fluxes of Λ0 and Λ¯0 for incident π−, and (3) close similarity of the following spectra: π−→n and K−→Λ0; π−→Λ0, π−→Λ¯0, and p→KS0; π−→KS0 and p→Λ0. The overall features of the various distributions seem to agree with the ideas of dimensional counting presented in the constituent-interchange model of quark collisions. Results are presented in terms of the invariant cross section Ed3σ(xL, PT=0)dp3 per Be nucleus for each inclusive reaction.
No description provided.
No description provided.
No description provided.
Inclusive production cross sections have been measured for the processes p+A→Ξ0+X (A=Be, Cu, Pb) and for p+Be→Ξ¯0+X. Data were taken at angles of 0, 2, 3.5, 7.3, and 9.8 mrad between the incident 400-GeV proton beam and the outgoing hyperon beam. Production cross sections for Λ and Λ¯ production were measured at the same time. The A dependence of the Ξ0 cross sections is discussed, along with interpretations in terms of various models.
No description provided.
No description provided.
No description provided.
The polarization of Ξ− hyperons produced by 400-GeV protons in the reaction p+Be→Ξ−+X has been measured as a function of momentum at two production angles. The average polarization for the full sample (192 110 events) was -0.108±0.007. Comparisons are made with polarization measurements for other hyperons produced under similar conditions. From the same data, αΛαΞ was measured to be -0.303±0.004±0.004, where αΛ is the asymmetry parameter in the decay Λ→pπ−, αΞ is the asymmetry parameter in the decay Ξ−→Λπ−, and the uncertainties are statistical and systematic, respectively. This yields αΞ=-0.472±0.006±0.011, where the systematic uncertainty is dominated by the uncertainty in αΛ. An updated test of the ΔI=1/2 rule in Ξ decay is presented.
No description provided.
No description provided.
The inclusive cross section for J/ψ production times the branching ratio B(J/ψ→μ+μ−) has been measured in the forward pseudorapidity region: B×dσ[p¯+p→J/ψ(pT>10GeV/c,2.1<|η|<2.6)+X]/dη=192±9(stat)±29(syst)pb. The results are based on 74.1±5.2pb−1 of data collected by the CDF Collaboration at the Fermilab Tevatron Collider. The measurements extend earlier measurements of the D0 Collaboration to higher pTJ/ψ. In the kinematic range where the experiments partially overlap, these data are in good agreement with previous measurements.
The integrated cross section for J/PSI --> MU+ MU- decay.
Cross section as a function of PT. Statistical errors only.
We have measured the ratio of prompt production rates of the charmonium states χc1 and χc2 in 110pb−1 of pp¯ collisions at s=1.8TeV. The photon from their decay into J/ψγ is reconstructed through conversion into e+e− pairs. The energy resolution this technique provides makes the resolution of the two states possible. We find the ratio of production cross sections σχc2σχc1=0.96±0.27(stat)±0.11(syst) for events with pT(J/ψ)>4.0GeV/c, |η(J/ψ)|<0.6, and pT(γ)>1.0GeV/c.
No description provided.
The muon anomalous magnetic moment has been measured in a new experiment at Brookhaven. Polarized muons were stored in a superferric ring, and the angular frequency difference, ωa, between the spin precession and orbital frequencies was determined by measuring the time distribution of high-energy decay positrons. The ratio R of ωa to the Larmor precession frequency of free protons, ωp, in the storage-ring magnetic field was measured. We find R=3.707220(48)×10−3. With μμ/μp=3.18334547(47) this gives aμ+=1165925(15)×10−9 ( ±13ppm), in good agreement with the previous CERN measurements for μ+ and μ− and of approximately the same precision.
The anomalous g value is related to the gyromagnetic ratio by MOM(NAME=ANOMALOUS MAGNETIC) = (G-2)/2. The beam momentum spread is about 1 PCT.
None
No description provided.
No description provided.
No description provided.
The inclusive production of charmed baryonsΛc+ by 40–70 GeV neutrons on carbon has been observed. The decays\(\Lambda _c^ + \to \bar K^0 p\pi ^ + \pi ^ -\) (130 ± 18 events) andΛc+→Λ0π+π+π− (57±14 events) have been detected. The mean value ofΛc+ mass is (2,268±6) MeV/c2. The invariant cross section forX>0.5 is described byE·d3σ/dp3∝ exp(−)bPT·(1−X)n withb=(2.5±0.6) (GeV/c)−1 andn=(1.5±0.5).
.
.