New experimental results are reported on diffractive dissociation of protons into (nπ + ) in proton-proton collisions at a centre-of-mass energy of s = 45 GeV . The data were obtained using the Split-Field-Magnet detector at the CERN Intersecting Storage Rings. We have searched for resonance contributions and found peaks at mass values of 1.5 GeV, 1.65 GeV, and 2.1 GeV. A dip in d σ d t is observed at low t and low mass; it is most pronounced for events with neutrons emitted at 90° in the Gottfried-Jackson frame. The correlation between mass and slope depends strongly on θ J . The cross section of the channel pp → pnπ + is 400 ± 110 μb at s = 45 GeV , giving an energy dependence of s −0.30±0.07 for isospin exchange zero in this channel.
SCALE UNCERTAINTY 20 PCT IS INCLUDED IN ERROR.
SIG(P P --> P N PI+) IS NEARLY EQUAL TO SIG(P P --> P (N PI+)) WHICH WAS ACTUALLY MEASURED, SINCE THE CROSS SECTION OF THE REACTION P P --> N (P PI+) IS LESS THAN .1 MUB AS MEASURED BY N. KWAK ET AL., PL 62B, 359, 1976.
EXTRAPOLATING TO T=0 AND ALLOWING FOR OTHER DECAY MODES YIELDS RESULT.
We have measured charged-particle multiplicities and elastic and inelastic cross sections for π+p and pp interactions at 60 GeV/c. The data are from a 30 000-picture exposure of the 30-inch bubble chamber to a tagged but unseparated positive-particle beam at Fermilab. The low-order moments of the inelastic multiplicity distributions for all charged particles are 〈n〉 = 5.60±0.09, f2 = 0.96±0.31, and 〈n〉D = 2.19±0.06 for pp reactions and 〈n〉6.23±0.10, f2 = 1.63±0.37, and 〈n〉D = 2.22±0.06 for π+p collisions.
NORMALIZED TO A TOTAL CROSS SECTION OF 38.3 MB. CORRECTED FOR SMALL -T LOSSES AND FOR PI0 MESONS.
NORMALIZED TO A TOTAL CROSS SECTION OF 23.2 MB. CORRECTED FOR SMALL -T LOSSES AND FOR PI0 MESONS.
FORWARD CROSS SECTIONS ARE CONSISTENT WITH OPTICAL POINT FOR PURELY IMAGINARY ELASTIC AMPLITUDES.
Measurements of the proton-proton total cross section have been made with increased precision (±0.6%) over the ISR energy range s =23.5−62.7 GeV . Two different experimental methods gave consistent results, showing that the total cross section increases 10% over the ISR range and in addition that the absolute value of the ISR luminosity can be measured to ±0.9%.
CROSS SECTIONS ARE A WEIGHTED AVERAGE OF THOSE OBTAINED BY THE PISA-STONY BROOK METHOD AND BY THE CERN-ROME (OPTICAL THEOREM) METHOD.
We compare some aspects of the N→N π , N→N ππ and N → Λ K diffractive fragmentation systems induced by 14.3 GeV/ c incident K − mesons with those obtained in pp interactions at ISR energies. The similarity between the low-mass Nπ and Nππ systems produced by different incident particles at c.m. energies differing by an order of magnitude is very striking. The shapesof the mass spectra (not the M 2 / s spectra) are approximately independent of s , both in the resonant and non-resonant diffractive dissociation components. These findings, as well as features of the differential cross sections and decay angular distributions, indicate that the (asymptotic) diffractive dynamics operative at ISR energies is already dominant at 10–20 GeV/ c , remains essentially unchanged over this broad energy range, and has approximate vertex factorization properties.
No description provided.
The reaction γ V p → p π + π − was studied in the W , Q 2 region 1.3–2.8 GeV, 0.3–1.4 GeV 2 using the streamer chamber at DESY. A detailed analysis of rho production via γ V p→ ϱ 0 p is presented. Near threshold rho production has peripheral and non-peripheral contributions of comparable magnitude. At higher energies ( W > 2 GeV) the peripheral component is dominant. The Q 2 dependence of σ ( γ V p→ ϱ 0 p) follows that of the rho propagator as predicted by VDM. The slope of d σ /d t at 〈 Q 2 〉 = 0.4 and 0.8 GeV 2 is within errors equal to its value at Q 2 = 0. The overall shape of the ϱ 0 is t dependent as in photoproduction, but is independent of Q 2 . The decay angular distribution shows that longitudinal rhos dominate in the threshold region. At higher energies transverse rhos are dominant. Rho production by transverse photons proceeds almost exclusively by natural parity exchange, σ T N ⩾ (0.83 ± 0.06) σ T for 2.2 < W < 2.8 GeV. The s -channel helicity-flip amplitudes are small compared to non-flip amplitudes. The ratio R = σ L / σ T was determined assuming s -channel helicity conservation. We find R = ξ 2 Q 2 / M ϱ 2 with ξ 2 ≈ 0.4 for 〈 W 〉 = 2.45 GeV. Interference between rho production amplitudes from longitudinal and transverse photons is observed. With increasing energy the phase between the two amplitudes decreases. The observed features of rho electroproduction are consistent with a dominantly diffractive production mechanism for W > 2 GeV.
DIPION CHANNEL CROSS SECTION.
THE TOTAL CROSS SECTION WAS OBTAINED BY THE AUTHORS FROM A FIT TO THE SINGLE ARM DATA OF S. STEIN ET AL., PR D12, 1884 (1975).
No description provided.
The production and decay of the quasi-two-body final states KΔ(1232) and K ∗ (892)N produced in K + d interactions below 1.5 GeV/ c have been studied in a bubble chamber experiment.
RESONANCE CROSS SECTIONS COMPUTED BY MULTIPLYING THE PRODUCTION PERCENTAGES GIVEN BY THE INTERFERENCE MODEL BY THE CHANNEL CROSS SECTIONS GIVEN IN G. GIACOMELLI ET AL., NP B37, 577 (1972).
DIFFERENTIAL CROSS SECTIONS FROM DEUTERIUM DATA, NORMALIZED TO THE EXPERIMENTAL INTEGRATED CROSS SECTIONS QUOTED IN T 2.
LEGENDRE COEFFICIENTS FROM DEUTERIUM DATA.
A measurement of the cross section of the charge-exchange reaction pp→ Δ ++ (1232)n at √ s = 23, 31 and 45 GeV at the CERN-ISR is reported. The energy dependence continues to follow a power law p lab − n with n = 1.94 ± 0.03 indicating dominance of one-pion exchange at the lowest ISR energy; there is some evidence for deviation from this at the higher ISR energies.
No description provided.
No description provided.
No description provided.
The presence of a structure in the p̄p total cross section at 1930–1940 MeV, with a narrow width of 9 MeV is confirmed. The interpretation of the effect as a single, non interfering, resonance is made difficult by the comparison of the elastic scattering with the charge exchange cross sections.
'INELASTIC' IS 0+2+4+6 PRONGS MINUS ELASTIC.
None
No description provided.
No description provided.
We observe a resonancelike structure in the total cross section for hadron production by e+e− colliding beams at a mass of 4414 ± 7 MeV having a total width Γ=33±10 MeV. From the area under this resonance, we deduce the partial width to electron pairs to be Γee=440±140 eV. Further structure of comparable width is present near 4.1 GeV.
No description provided.