The electroproduction of π0-mesons on protons has been measured with electrons of 1.7 and 2.1 GeV energy in the region of the nucleon resonances at\(W = \sqrt {(q + p)^2 }= 1,400 - 2,000MeV\) at rather low values of |q2|=|(e−e′)2|=0.01–0.1 GeV2 but at high values of the nucleon recoil |t|=|(p−p′)2|≈0.6–2.2 GeV2 corresponding to\(\Theta _\pi ^{cm}\approx 145^ \circ- 180^ \circ\). Up toW≈1,650 MeV the cross section for π0-production with virtual photons of |q2|≈0.03 GeV2 is only slightly smaller than that with real photons. ForW≳1,700 MeV the cross section at |q2|≈0.03 GeV2 is on average a factor of 2 smaller than that atq2=0 but only slightly higher than that at |q2|≈0.3–1 GeV2.
INCLUDING RADIATIVE CORRECTIONS.
INCLUDING RADIATIVE CORRECTIONS.
INCLUDING RADIATIVE CORRECTIONS.
We present data obtained from a 1.7 sr hadron calorimeter, triggered on transverse energy, in pp collisions at s =63 GeV at the CERN-ISR. From the change in the distribution of energy in the calorimeter, we extract the cross section for two-constituent hard scattering for p T between 6 and 14 GeV at y = 0. The decrease of this jet cross section over this p T range is consistent with exp (− bp T ), with b = (1.02 ± 0.09) GeV −1 . The slope and normalization of the cross section agree well with a QCD motivated Monte Carlo model. The ratio between jet and single particle cross sections [ dσ JET / dp T )/( dσ π 0 / dp T )]| y = 0 changes from about 200 at 6 GeV to about 1500 at 14 GeV.
No description provided.
No description provided.
In a search for short lived particles with a high resolution C 3 F 8 bubble chamber and a streamer chamber, 21 charmed meson candidates produced by 340 GeV cπ − have been identified. The cross section for associated charm production is (28±11) μb per nucleon assuming a linear A -dependence. The mean lifetimes of the D mesons in units of 10 −13 s are τ( D 0 , D ̄ 0 ) = 4.1 −1.3 +2.6 ± 0.5, τ( D ± ) = 6.3 −2.3 4.8 ± 1.5 .
LINEAR A DEPENDENCE ASSUMED FROM PROD. OF 33+-13 D-DBAR EVENTS.
Inclusive charged-current interactions of high-energy neutrinos and antineutrinos have been studied with high statistics in a counter experiment at the CERN Super Proton Synchrotron. The energy dependence of the total cross-sections, the longitudinal structure function, and the nucleon structure functionsF2,xF3, and\(\bar q^{\bar v} \) are determined from these data. The analysis of theQ2-dependence of the structure functions is used to test quantum chromodynamics, to determine the scale parameter Λ and the gluon distribution in the nucleon.
ABSOLUTE FLUXES HAVE NOT BEEN MEASURED. NORMALISED TO OLD RESULTS.
STUCTURE FUNCTIONS ARE EVALUATED ASSUMING R=SIG(L)/SIG(T)=0.1 AND M(W) IS INFINITE. NO CORRECTION FOR FERMI MOTION APPLIED. ERRORS ARE STATISTICAL AND SYSTEMATIC POINT-TO-POINT ERRORS. IN ADDITION OVER-ALL SCALE ERROR OF 6 PCT. FOR F2 , 8 PCT. FOR XF3.
STUCTURE FUNCTIONS ARE EVALUATED ASSUMING R=SIG(L)/SIG(T)=0.1 AND M(W) IS INFINITE. NO CORRECTION FOR FERMI MOTION APPLIED. ERRORS ARE STATISTICAL AND SYSTEMATIC POINT-TO-POINT ERRORS. IN ADDITION OVER-ALL SCALE ERROR OF 6 PCT. FOR F2 , 8 PCT. FOR XF3.
Two photon final states in e + e − annihilation have been analyzed at CM energies around 34 GeV. Good agreement with QED is observed. Lower limits for the QED cutoff parameters of Λ + > 59 GeV and Λ - > 44 GeV are determined. A search for two photons with missing energy yields an upper limit for the production of neutral particles which decay into a photon and a non-interacting particle. Constraints on the mass and the coupling strength of supersymmetric photinos are discussed.
Cross section for ABS(cos(theta)) <0.85.
No description provided.
We have measured the production of one and two large transverse momentum hadrons in p p and pp interactions in the range 2 < p T < 6 GeV/ c for the central rapidity region |y| < 0.9 at s = 63 and 31 GeV . No statistically significant difference between p p and pp collisions is observed. The results are in accordance with lowest order QCS perturbative calculations and rule out a large contribution of Constituent Interchange Model (CIM), di-quark of quark-fusion subprocesses in this kinematic range.
No description provided.
No description provided.
The np elastic differential cross section has been measured for incident neutron momenta 100–400 GeV/ c in the | t | range 6 · 10 −6 − 5 · 10 −1 (GeV/ c ) 2 . The np data of this experiment provide a first direct measurement of the hadronic amplitude for | t | < 10 −2 (GeV/ c ) 2 , which is consistent with the extrapolations from higher | t | values. Our data for | t | < 10 −4 (GeV/ c ) 2 are consistent with a rise which can be attributed to Schwinger scattering, caused by the interaction of the neutron magnetic moment with the proton.
No description provided.
No description provided.
No description provided.
None
CESIUM-IODINE DESIGNATED NUCLEUS.
CESIUM-IODINE DESIGNATED NUCLEUS.
CESIUM-IODINE DESIGNATED NUCLEUS.
A narrow state has been observed in the reaction Σ − + Be → ( Λ K − π + π + ) + X in an experiment at the CERN SPS hyperon beam. At 2.46 GeV/ c 2 the effective ( Λ K − π + π + ) mass distribution shows an excess of 82 events above a background estimated to be 147, corresponding to a statistical significance of more than 6 standard deviations. The positive charge of the observed final state, which has strangeness −2, suggests the interpretation as a Cabibbo favoured decay of the charmed strange baryon, A + [quark content (csu)]. The cross section times branching ratio is measured to be σ · B = (5.3 ± 2.0) μ b/ (Be nucleus) for x > 0.6. The invariant production cross section is described by E d 3 σ /d p 3 ∞ (1 - x ) (1.7±0.7) exp[−(1.1 −0.4 +0.7 ) p T 2 ].
No description provided.
Differential cross sections for π + p elastic scattering were measured for seven incident energies from 65 to 140 MeV at laboratory scattering angles between 93° and 165°. The results are compared with previous results of Bertin et al. and the phase-shift analysis of Arndt and Roper. Agreement between the phase-shift analysis and the data is good.
ABSOLUTE NORMALIZATION UNCERTAINTY = 2.4 PCT.
ABSOLUTE NORMALIZATION UNCERTAINTY = 2.0 PCT.
ABSOLUTE NORMALIZATION UNCERTAINTY = 1.4 PCT.