$\Lambda$ Production in $e^+ e^-$ Annihilation at 29-{GeV}

de la Vaissiere, C. ; Luth, V. ; Abrams, G.S. ; et al.
Phys.Rev.Lett. 54 (1985) 2071-2074, 1985.
Inspire Record 209198 DOI 10.17182/hepdata.20378

The production of Λ hyperons in e+e− annihilation has been measured as a function of their total momenta, transverse momenta, and the event thrust. The total production rate is 0.213±0.012±0.018 Λ or Λ¯ per hadronic event. The observation of correlations in rapidity and angles for events with two detected Λ decays supports fragmentation models with local baryon-number compensation.

3 data tables

No description provided.

No description provided.

No description provided.


$\Lambda$(c)+ Production and Semileptonic Decay in 29-{GeV} $e^+ e^-$ Annihilation

Klein, S. ; Himel, T. ; Abrams, G.S. ; et al.
Phys.Rev.Lett. 62 (1989) 2444, 1989.
Inspire Record 277034 DOI 10.17182/hepdata.20042

We present results on Λc+ production in 29-GeV e+e− annihilation. The Λc+ are observed via their semileptonic decays to Λe+X and Λμ+X. With radiative corrections, we find σ(e+e−→Λc+X)〉BΛc+→eΛX)= 1.5±0.6±0.5 pb or 0.0038±0.0015±0.0012 Λc+→Λe+X decay per hadronic event, and σ(e+e−Λc+X)B(Λc+→μΛX)= 1.4±1.4±0.4 pb or 0.0035±0.0035±0.0011 Λc+→Λμ+X decay per hadronic event. These results can be used to place constraints on the predictions of various production models.

2 data tables

Cross sections * branching ratio for LAMBDA/C+ production in LAMBDA E+ decay channel.

Cross sections * branching ratio for LAMBDA/C+ production in LAMBDA MU+ decay channel.


$\eta$ and $\eta^\prime$ Production in $e^+ e^-$ Annihilation at 29-{GeV}: Indications for the $D(s$)+- Decays Into $\eta \pi^\pm$ and $\eta^\prime \pi^\pm$

Wormser, G. ; Abrams, G.S. ; Amidei, D. ; et al.
Phys.Rev.Lett. 61 (1988) 1057, 1988.
Inspire Record 261194 DOI 10.17182/hepdata.20080

η production has been investigated by the Mark II collaboration at the SLAC e+e− storage ring PEP. η particles are reconstructed by their γγ decay mode. The η fragmentation function has been measured and found to be in good agreement with the Lund-model prediction. η′ production has been measured for the first time in high-energy e+e− annihilation. There is evidence at the 3σ level for Ds± decay into ηπ± and η′π±.

4 data tables

Numerical values supplied by G.Wormser.

Z = 0.0 point extrapolated using LUND fragmentation model.

Z = 0.0 point extrapolated using LUND fragmentation model.

More…

A Comparison of the Particle Flow in Three Jet and Radiative Two Jet Events From $e^+ e^-$ Annihilation at $e$({CM}) = 29-{GeV}

Sheldon, P.D. ; Trilling, G. ; Petersen, A. ; et al.
Phys.Rev.Lett. 57 (1986) 1398, 1986.
Inspire Record 230941 DOI 10.17182/hepdata.20219

We have made a detailed comparison of the charged-particle flow in three-jet events (e+e−→qq¯g) and radiative two-jet events (e+e−→qq¯γ) from e+e− annihilation at Ec.m.=29 GeV. Accurate comparisons can be made because these two event types have similar topologies. In the angular region between the quark and antiquark jets, we observe substantially fewer charged tracks in the two-jet events than in the radiative three-jet events.

4 data tables

No description provided.

No description provided.

No description provided.

More…

A Determination of alpha-s (M (Z0)) at LEP using resummed QCD calculations

The OPAL collaboration Acton, P.D. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 59 (1993) 1-20, 1993.
Inspire Record 354188 DOI 10.17182/hepdata.14427

The strong coupling constant, αs, has been determined in hadronic decays of theZ0 resonance, using measurements of seven observables relating to global event shapes, energy correlatio

7 data tables

Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.

Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.

Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.

More…

A Global determination of alpha-s (M(z0)) at LEP

The OPAL collaboration Acton, P.D. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 55 (1992) 1-24, 1992.
Inspire Record 333079 DOI 10.17182/hepdata.14606

The value of the strong coupling constant,$$\alpha _s (M_{Z^0 } )$$, is determined from a study of 15 d

16 data tables

Differential jet mass distribution for the heavier jet using method T. The data are corrected for the finite acceptance and resolution of the detector and for initial state photon radiation.

Differential jet mass distribution for the jet mass difference using methodT. The data are corrected for the finite acceptance and resolution of the detec tor and for initial state photon radiation.

Differential jet mass distribution for the heavier jet using method M. The data are corrected for the finite acceptance and resolution of the detector and for initial state photon radiation.

More…

A Measurement of J / psi decay widths

The BES collaboration Bai, J.Z. ; Chen, G.P. ; Chen, H.F. ; et al.
Phys.Lett.B 355 (1995) 374-380, 1995.
Inspire Record 39870 DOI 10.17182/hepdata.28500

The cross sections for e + e − → hadrons, e + e − , μ + μ − have been measured in the vicinity of the J Ψ resonance using the BES detector operated at BEPC. The partial widths for J Ψ to hadrons, electrons, muons and the total width have been determined to be Γ h = 74.1 ± 8.1 keV, Γ e = 5.14 ± 0.39 keV, Γ μ = 5.13 ± 0.52 keV, and Γ = 84.4 ± 8.9 keV, respectively.

1 data table

No description provided.


A Measurement of K*+- (892) production in hadronic Z0 decays

The OPAL collaboration Acton, P.D. ; Alexander, G. ; Allison, John ; et al.
Phys.Lett.B 305 (1993) 407-414, 1993.
Inspire Record 342766 DOI 10.17182/hepdata.28930

Measurements are presented of the inclusive cross section for K ∗ (892) ± production in hadronic decays of the Z 0 using a sample of about half a million events recorded with the OPAL experiment at LEP. Charged K ∗ mesons are reconstructed in the decay channel K 0 S π ± . A mean rate of 0.72±0.02±0.08 K ∗ mesons per hadronic event is found. Comparison of the results with predictions of the JETSET and HERWIG models shows that JETSET overestimates the K ∗± production cross section while HERWIG is consistent with the data.

2 data tables

No description provided.

No description provided.


A Measurement of alpha-s from jet rates at the Z0 resonance

The SLD collaboration Abe, K. ; Abt, I. ; Acton, P.D. ; et al.
Phys.Rev.Lett. 71 (1993) 2528-2532, 1993.
Inspire Record 356912 DOI 10.17182/hepdata.19724

We have determined the strong coupling αs from measurements of jet rates in hadronic decays of Z0 bosons collected by the SLD experiment at SLAC. Using six collinear and infrared safe jet algorithms we compared our data with the predictions of QCD calculated up to second order in perturbation theory, and also with resummed calculations. We find αs(MZ2)=0.118±0.002(stat)±0.003(syst)±0.010(theory), where the dominant uncertainty is from uncalculated higher order contributions.

1 data table

The second systematic error comes from the theoretical uncertainties.


A Measurement of charged particle multiplicity in Z0 --> c anti-c and Z0 --> b anti-b events

The OPAL collaboration Akers, R. ; Alexander, G. ; Allison, John ; et al.
Phys.Lett.B 352 (1995) 176-186, 1995.
Inspire Record 393953 DOI 10.17182/hepdata.48168

We have used data from the OPAL detector at LEP to reconstruct D ∗ mesons and secondary vertices in jets. We have studied the hemispheres of the events opposite these jets and obtain values of the hemisphere charged particle multiplicity in Z 0 → u u , d d , s s , Z 0 → c c and Z 0 → b b events of n uds = 10.41 ± 0.06 ± 0.09 ± 0.19 ; n c = 10.76 ± 0.20 ± 0.14 ± 0.19 ; n b = 11.81 ± 0.01 ± 0.12 ± 0.21 where the first errors are statistical, the second systmatic and the third a common scale uncertainty. We find the difference in total charged particle multiplicity between c and b quark events and light (u, d, s) quark events to be δ cl = 0.69 ± 0.51 ± 0.35; δ bl = 2.79 ± 0.12 ± 0.27. These results are compared to the predictions of various models and QCD based calculations.

2 data tables

Second systematic error is a common scale uncertainty.

Difference in the TOTAL charged particle multiplicity.