For the reaction π + p → ωΔ ++ data on the total cross section ( σ = 61 ± 12 μ b), differential cross sections, spin density matrix elements and statistical tensor elements are given. We observe natural and unnatural parity exchange contributions to the total cross section. We note that the value of ϱ 00 is not zero and in the helicity frame exhibits a dip at t ≈ −0.25 (GeV/ c ) 2 . A qualitative theoretical discussion of our results is presented.
CORRECTED FOR BACKGROUND, RESONANCE TAILS AND UNSEEN OMEGA DECAY MODES.
NORMALIZED TO THE TOTAL CROSS SECTION. SOME BACKGROUND IS PRESENT.
NORMALIZED TO THE TOTAL CROSS SECTION. SOME BACKGROUND IS PRESENT.
Results are presented on the inclusive π ± production in K − p interactions at 32.1 GeV/ c . The invariant longitudinal distributions have been calculated both for π + and π − in the backward c.m. hemisphere and extrapolated in the forward hemisphere under some physical assumptions. The inclusive cross sections for π + and π − amount to 32.9 ± 1.5 mb and 35.0 ± 0.7 mb respectively. The energy dependence of the inclusive pion production has been analyzed in the framework of Mueller-Regge phenomenology both in the proton fragmentation and in the central region.
No description provided.
No description provided.
No description provided.
The inclusive cross section and the average multiplicity are evaluated for most of the charged ( π ± , p, K ± ) and neutral (γ, π 0 , K 0 , K 0 , Λ, Λ , n ) particles produced in 32 GeV/ c K − p interactions; corresponding results are obtained for each charged topology separately. New results are given for the total charged multiplicity cross sections. The average longitudinal momentum of neutrals is found to be roughly equal to that of charged particles. The π + and π − multiplicity distributions are reconstructed and compared to the π 0 and to the total charged multiplicity distributions.
No description provided.
Axis error includes +- 30/30 contribution (SYSTEMATIC ERROR FOR K0 MULTIPLICITY, WHICH IS EVALUATED FROM 2 ASSUMPTIONS: ALL K0'S COME FROM THE FINAL STATES (N K 2AK PIONS) OR (LAMBDA/SIGMA K AK PIONS) AND CHARGE DISTRIBUTION IN THESE FINAL STATES OBEYS A STATISTICAL ISOSPIN MODEL OF F.CERULUS,NC 19, 528. ALSO ASSUMED THAT SIG(K+)=SIG(KO). VALUES OF SIG(XI-) AND RATIOS SIG(SIGMA+)/SIG(LAMBDA), SIG(SIGMA-)/SIG(LAMBDA) ARE TAKEN FROM 14.3 GEV EXPERIMENT LOUEDEC 76,NC 41A, 166, STATISTICAL ERRORS BEING DOUBLED. FOR ALL ANTIBARYONS ASSUMED THAT SIG(ANTIBARYON)/SIG(BARYON)=SIG(ANTILAMBDA)/SIG(LAMBDA) =0.046+-0.020. SLOW PROTONS WITH PLAB < 1.2 GEV/C ARE IDENTIFIED, AN ESTIMATE FOR FAST PROTON PRODUCTION IS TAKEN FROM FACCINI 77,NP B127, 109).
Axis error includes +- 30/30 contribution (SYSTEMATIC ERROR FOR K0 MULTIPLICITY, WHICH IS EVALUATED FROM 2 ASSUMPTIONS: ALL K0'S COME FROM THE FINAL STATES (N K 2AK PIONS) OR (LAMBDA/SIGMA K AK PIONS) AND CHARGE DISTRIBUTION IN THESE FINAL STATES OBEYS A STATISTICAL ISOSPIN MODEL OF F.CERULUS,NC 19, 528. ALSO ASSUMED THAT SIG(K+)=SIG(KO). VALUES OF SIG(XI-) AND RATIOS SIG(SIGMA+)/SIG(LAMBDA), SIG(SIGMA-)/SIG(LAMBDA) ARE TAKEN FROM 14.3 GEV EXPERIMENT LOUEDEC 76,NC 41A, 166, STATISTICAL ERRORS BEING DOUBLED. FOR ALL ANTIBARYONS ASSUMED THAT SIG(ANTIBARYON)/SIG(BARYON)=SIG(ANTILAMBDA)/SIG(LAMBDA) =0.046+-0.020. SLOW PROTONS WITH PLAB < 1.2 GEV/C ARE IDENTIFIED, AN ESTIMATE FOR FAST PROTON PRODUCTION IS TAKEN FROM FACCINI 77,NP B127, 109).
Antineutrino interactions in BEBC are compared to look for differences between the differential cross sections per nucleon in neon and in deuterium. The identical geometries, beam spectra and muon identification criteria and acceptances allow comparison with very small systematic errors. The results are compared in detail with μ and e scattering data from EMC and SLAC. We find no rise in the ratio d σ/ d x ( ν Ne )/σ/ d x ( ν D 2 ) at low x , independent of Q 2 up to Q 2 ∼ 14 GeV 2 .
VALUES OF Q**2 IN THIS TABLE ARE :- 1.07,2.59,4.33,6.14,7.67,8.28,6.35 (FOR ALL Q**2) AND :-,7.9,9.5,11.5,13.2,13.9,11.6 (FOR Q**2 > 4.5 ).
Data from an exposure of the BEBC bubble chamber filled with deuterium to neutrino and antineutrino wide band beams have been used to extract the x dependence of the structure functions for scattering on protons and neutrons and the fractional momentum distributions of the valence quarks and the antiquarks of different flavours. The difference F n 2 − F p 2 is compared with recent data from high energy μD scattering. A result is also obtained on the sum rule giving the difference between the number of up and down quarks in the nucleon.
No description provided.
Lambda production is studied in K − p interactions at 32 GeV/ c . The total Λ cross section is 2.31±0.03 mb . Using the measured Λγ combinations we find that (31±4)% of all Λ's are produced via the Σ 0 → Λγ decay. About 60% of the Λ's are associated with either a N N or K K pair; about 40% of the Λ's are produced through the hypercharge annihiltion reaction K − p→ Λ + π 'a. The two-peak structure of the invariant x distribution can be related to fragmentation processes. The Λ is found to be unpolarized in the target fragmentation region, whereas a transverse polarization is observed for forward produced Λ's. As a function of p ⊥, a polarization effect is measured at medium p ⊥.
No description provided.
No description provided.
No description provided.
An analysis has been performed of neutrino and antineutrino interactions with protons and neutrons in a deuterium bubble chamber. The interactions under study are quasielastic neutrino-neutron scattering and one-, two- and three-pion production reactions. Results are presented on cross sections, effective mass distributions, resonance production, momentum transfer distributions and coefficients of the decay angular distributions. Where possible, comparisons are made with existing theoretical models and predictions.
No description provided.
Numerical values supplied by A.Tenner.
Numerical values supplied by A.Tenner.
The fragmentation of the hadronic system into Λ, Σ(1385), K ) and K ∗ (892) in deep-inelastic charged-current interactions of high energy neutrinos and antineutrinos with proton and neutron is analyzed. The results obtained for the production of these particles from the various initial states are compared with each other and with the predictions of the Lund fragmentation model. This comparison shows that a spectator diquark does not fragment as a whole in a fraction of the interactions. The role of the sea quarks in the baryon formation process is underlined. Strange vector and pseudoscalar mesons are likely to be produced at similar rates.
No description provided.
SIG(C=LAMBDA) denotes the inclusive LAMBDA production in the same reaction.
SIG(C=KS) denotes the inclusive KS production in the same reaction.
We have measured neutral and charged current interactions of ν μ and ν μ on proton and neutron. From a combination of ratios we determine the neutral current chiral coupling constants. The results are u 2 L = 0.13 ± 0.03, d 2 L = 0.19 ± 0.03, u 2 R = 0.02 ± 0.02 and d 2 R = 0.00 ± 0.02. These results agree with the predictions of the standard SU(2) × U(1) model. The corresponding value of sin 2 θ W is 0.20 ± 0.04.
No description provided.
No description provided.
No description provided.
A study of the inclusive and semi-inclusive Λ and Λ production in K + p interactions at 32 GeV/ c is presented. The inclusive cross sections for Λ and Λ amount to 0.78 ± 0.05 and 0.42 ± 0.04 mb thus showing a remarkable growth between 16 and 32 GeV/ c with a factor of 1.7 for Λ and 2.8 for Λ . Target and beam fragmentation processes are found to be dominant for Λ and Λ production respectively with the following lower limits for the corresponding cross sections: σ(p → K + ʌ) > 0.5 mb and σ(K + → p ʌ ) > 0.3 mb . Although the early scaling conditions are fulfilled for the Λ production in the target fragmentation region, and Λ production in the beam fragmentation region, scaling is not observed between 16 and 32 GeV/ c in the x and p T 2 Feynman variables. The Λ production is found to be very similar in the K + p inclusive reaction at 32 GeV/ c and in the semi-inclusive reaction K − p → Λ K K X at the same energy. The Λ Λ pair production cross section increases significantly in K + p interactions from 16 to 32 GeV/ c where it reaches the value σ Λ Λ = 47 ± 11 μ b . The cross sections for Λ or Λ produced in association with an identified proton are also given and discussed.
No description provided.
No description provided.