The acceptance-corrected dielectron excess mass spectra, where the known hadronic sources have been subtracted from the inclusive dielectron mass spectra, are reported for the first time at mid-rapidity $|y_{ee}|<1$ in minimum-bias Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 and 200 GeV. The excess mass spectra are consistently described by a model calculation with a broadened $\rho$ spectral function for $M_{ee}<1.1$ GeV/$c^{2}$. The integrated dielectron excess yield at $\sqrt{s_{NN}}$ = 19.6 GeV for $0.4<M_{ee}<0.75$ GeV/$c^2$, normalized to the charged particle multiplicity at mid-rapidity, has a value similar to that in In+In collisions at $\sqrt{s_{NN}}$ = 17.3 GeV. For $\sqrt{s_{NN}}$ = 200 GeV, the normalized excess yield in central collisions is higher than that at $\sqrt{s_{NN}}$ = 17.3 GeV and increases from peripheral to central collisions. These measurements indicate that the lifetime of the hot, dense medium created in central Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV is longer than those in peripheral collisions and at lower energies.
Reconstructed dielectron unlike-sign pairs, like-sign pairs and signal distributions, together with the signal to background ratio (S/B). All columns are presented as a function of dielectron invariant mass in Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV.
Dielectron invariant mass spectrum in the STAR acceptance (|$y_{ee}$| < 1, 0.2 < $p_T^e$ < 3 GeV/c, |$\eta^e$ | < 1) after efficiency correction in Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV.
Hadronic cocktail consisting of the decays of light hadrons and correlated decays of charm in Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV.
The production of Upsilon(1S), Upsilon(2S) and Upsilon(3S) mesons in proton-proton collisions at the centre-of-mass energy of sqrt(s)=7 TeV is studied with the LHCb detector. The analysis is based on a data sample of 25 pb-1 collected at the Large Hadron Collider. The Upsilon mesons are reconstructed in the decay mode Upsilon -> mu+ mu- and the signal yields are extracted from a fit to the mu+ mu- invariant mass distributions. The differential production cross-sections times dimuon branching fractions are measured as a function of the Upsilon transverse momentum pT and rapidity y, over the range pT < 15 GeV/c and 2.0 < y < 4.5. The cross-sections times branching fractions, integrated over these kinematic ranges, are measured to be sigma(pp -> Upsilon(1S) X) x B(Upsilon(1S)->mu+ mu-) = 2.29 {\pm} 0.01 {\pm} 0.10 -0.37 +0.19 nb, sigma(pp -> Upsilon(2S) X) x B(Upsilon(2S)->mu+ mu-) = 0.562 {\pm} 0.007 {\pm} 0.023 -0.092 +0.048 nb, sigma(pp -> Upsilon(3S) X) x B(Upsilon(3S)->mu+ mu-) = 0.283 {\pm} 0.005 {\pm} 0.012 -0.048 +0.025 nb, where the first uncertainty is statistical, the second systematic and the third is due to the unknown polarisation of the three Upsilon states.
Integrated cross-sections times dimuon branching fractions in the PT range < 15 GeV/c and rapidity in the range 2.0-4.0. The second systematic (sys) error is due to the unknown polarisation of the three states.
Double differential cross section for UPSI(1S) production times the dimuon branching fraction as a function of PT for the rapidity region 2.0-2.5. The second systematic (sys) error is due to the unknown polarisation of the UPSI(1S).
Double differential cross section for UPSI(1S) production times the dimuon branching fraction as a function of PT for the rapidity region 2.5-3.0. The second systematic (sys) error is due to the unknown polarisation of the UPSI(1S).
The cross-section for inclusive phi meson production in pp collisions at a centre-of-mass energy of sqrt(s) = 7 TeV has been measured with the LHCb detector at the Large Hadron Collider. The differential cross-section is measured as a function of the phi transverse momentum p_T and rapidity y in the region 0.6 < p_T < 5.0 GeV/c and 2.44 < y < 4.06. The cross-section for inclusive phi production in this kinematic range is sigma(pp -> phi X) = 1758 pm 19(stat) ^{+43}_{-14}(syst) pm 182(scale) microbarn, where the first systematic uncertainty depends on the p_T and y region and the second is related to the overall scale. Predictions based on the Pythia 6.4 generator underestimate the cross-section.
Integrated PHI production cross section in the observed kinematic region.
Inclusive differential PHI production cross section as a function of PT in the rapidity ranges 2.44-2.62 and 2.62-2.80.
Inclusive differential PHI production cross section as a function of PT in the rapidity ranges 2.80-2.98 and 2.98-3.16.
The production of $J/\psi$ mesons in proton-proton collisions at $\sqrt{s}$= 7 tev is studied with the LHCb detector at the LHC. The differential cross-section for prompt $J/\psi$ production is measured as a function of the $J/\psi$ transverse momentum p_{\rm T}\ and rapidity $y$ in the fiducial region $p_{\rm T}\in[0;14]$ GeV/c and $y\in[2.0;4.5]$. The differential cross-section and fraction of \j psi\ from $b$-hadron decays are also measured in the same p_{\rm T}\ and $y$ range s. The analysis is based on a data sample corresponding to an integrated luminos ity of 5.2 pb$^{-1}$. The measured cross-sections integrated over the fiducial region are $10.52\pm 0. 04\pm 1.40^{+1.64}_{-2.20}\mu b$ for $\mathrm{prompt}~J/\psi$ production and $1.14 \pm 0. 01\pm 0.16 \mu b$ for $J/\psi$ from $b$-hadron decays, where the first uncertainty is statistical and the second systematic. The $\mathrm{prompt}~J/\psi$ production cross-section is obtained assuming no $J/\psi$ polarisation and the third error indicates the acceptance uncertainty due to this assumption.
Integrated cross section in the defined fiducial region for prompt J/PSIs and for those from b-hadron decay assuming no polarisation. The second systematic error in the prompt cross section is the uncertainty related to the assumption of no polarisation.
The derived cross section for b-hadron production obtained by extrapolation to the full polar angle range using the LHCB MC based on Pythia6.4 and EvtGen and a branching ratio to J/PSI of 1.16+-0.1 PCT.
Mean PT and RMS for prompt J/PSI production (assuming unpolarised).
Jet cross sections have been measured for the first time in proton-proton collisions at a centre-of-mass energy of 7 TeV using the ATLAS detector. The measurement uses an integrated luminosity of 17 nb-1 recorded at the Large Hadron Collider. The anti-kt algorithm is used to identify jets, with two jet resolution parameters, R = 0.4 and 0.6. The dominant uncertainty comes from the jet energy scale, which is determined to within 7% for central jets above 60 GeV transverse momentum. Inclusive single-jet differential cross sections are presented as functions of jet transverse momentum and rapidity. Dijet cross sections are presented as functions of dijet mass and the angular variable $\chi$. The results are compared to expectations based on next-to-leading-order QCD, which agree with the data, providing a validation of the theory in a new kinematic regime.
Inclusive jet double-differential cross sections in the |rapidity| range 0 to 0.3, using a jet resolution R value of 0.4. The three (sys) errors are respectively, the Absolute JES, the Unfolding and the Luminosity uncertainties.
Inclusive jet double-differential cross sections in the |rapidity| range 0.3 to 0.8, using a jet resolution R value of 0.4. The three (sys) errors are respectively, the Absolute JES, the Unfolding and the Luminosity uncertainties.
Inclusive jet double-differential cross sections in the |rapidity| range 0.8 to 1.2, using a jet resolution R value of 0.4. The three (sys) errors are respectively, the Absolute JES, the Unfolding and the Luminosity uncertainties.
Dijet angular distributions from the first LHC pp collisions at center-of-mass energy sqrt(s) = 7 TeV have been measured with the ATLAS detector. The dataset used for this analysis represents an integrated luminosity of 3.1 pb-1. Dijet $\chi$ distributions and centrality ratios have been measured up to dijet masses of 2.8 TeV, and found to be in good agreement with Standard Model predictions. Analysis of the $\chi$ distributions excludes quark contact interactions with a compositeness scale $\Lambda$ below 3.4 TeV, at 95% confidence level, significantly exceeding previous limits.
CHI distribution for mass bin 340 to 520 GeV.
CHI distribution for mass bin 520 to 800 GeV.
CHI distribution for mass bin 800 to 1200 GeV.
The production of K_short mesons in pp collisions at a centre-of-mass energy of 0.9 TeV is studied with the LHCb detector at the Large Hadron Collider. The luminosity of the analysed sample is determined using a novel technique, involving measurements of the beam currents, sizes and positions, and is found to be 6.8 +/- 1.0 microbarn^-1. The differential prompt K_short production cross-section is measured as a function of the K_short transverse momentum and rapidity in the region 0 < pT < 1.6 GeV/c and 2.5 < y < 4.0. The data are found to be in reasonable agreement with previous measurements and generator expectations.
The measured cross sections as a function of transverse momentum for prompt K0S production in three rapidity regions. The first systematic error is the uncorrelated systemtatic error and the second is the systematic error correlated across bins.
The double differential prompt K0S production cross section in three rapidity bands.
The double differential prompt K0S production cross section in the rapidity band 2.5 to 4.0.
Momentum spectra of charged pions over nearly full rapidity coverage from target to beam rapidity have been measured in the 0-5% most central Au+Au collisions in the beam energy range from 2 to 8 AGeV by the E895 Experiment. Using a thermal parameterization to fit the transverse mass spectra, rapidity density distributions are extracted. The observed spectra are compared with predictions from the RQMD v2.3 cascade model and also to a thermal model including longitudinal flow. The total 4$\pi$ yields of the charged pions are used to infer an initial state entropy produced in the collisions.
No description provided.
No description provided.
No description provided.
Rapidity distributions of protons from central $^{197}$Au + $^{197}$Au collisions measured by the E895 Collaboration in the energy range from 2 to 8 AGeV at the Brookhaven AGS are presented. Longitudinal flow parameters derived using a thermal model including collective longitudinal expansion are extracted from these distributions. The results show an approximately linear increase in the longitudinal flow velocity, $<\beta\gamma>_{L}$, as a function of the logarithm of beam energy.
No description provided.
No description provided.
No description provided.
This Letter describes a measurement of the muon cross section originating from b quark decay in the forward rapidity range 2.4 < y(mu) < 3.2 in pbarp collisions at sqrt(s) = 1.8 TeV. The data used in this analysis were collected by the D0 experiment at the Fermilab Tevatron. We find that NLO QCD calculations underestimate b quark production by a factor of four in the forward rapidity region. A cross section measurement using muon+jet data has been included in this version of the paper.
The forward muon cross section (per unit rapidity).
The cross section for muons originating from b-quark decay.
Integrated cross sections for muons originating from b-quark decay. The statistical and systematic errors are added in quadrature.