The production rate of final state photons in hadronic Z 0 decays is measured as a function of y cut = M ij 2 / E cm 2 the jet resolution parameter and minimum mass of the photon-jet system. Good agreement with the theoretical expectation from an O( αα s ) matrix element calculation is observed. Comparing the measurement and the prediction for y cut = 0.06, where the experimental systematic and statistical errors and the theoretical uncertainties are small, and combining this measurement with our result for the hadronic width of the Z 0 , we derived partial widths of up and down type quarks to be Γ u = 333 ± 55 ± 72 MeV and Γ d = 358 ± 37 ± 48 MeV in agreement with the standard model expectations. We compare our yield with the QCD shower models including photon radiation. At low γ cut JETSET underestimates the photon yield, and ARIADNE describes the production rate well.
It is assumed that the couplings of various up quarks to be the same.
It is assumed that the couplings of various down type quarks to be the same.
In this paper an investigation of the production of D ∗ ± mesons produced in e + e − collisions at energies around the Z 0 pole is presented. Based on 115 D ∗ ± mesons with x D∗ 2E D ∗ /E cm > 0.2 the properties of D ∗ mesons produced in the reaction Z 0 → c c are studied. Fixing the yield and the fragmentation function of bottom quarks to the values obtained at LEP using lepton tags, and average energy fraction of the D ∗ ± mesons from primary charmed quarks of 〈x c → D ∗ 〉 = 0.52 ± 0.03 +- 0.01 is found and Γ z 0 →c c = (323 ± 61 ± 35) MeV is determined. The first error is the combined statistical and systematic error from this experiment, and the second the total error from other sources.
FD denotes the fraction of D* mesons from primary charmed quarks, derived from the fit (see text).
No description provided.
None
DATA FROM 1989 RUN. The cross section are quoted with their statistical and point-to-point systematic uncertainty of both the multihadron acceptance and the luminosity calculation.
DATA FROM 1990 RUN. The cross section are quoted with their statistical and point-to-point systematic uncertainty of both the multihadron acceptance and the luminosity calculation.
Cross sections corrected for the effects of efficiency and kinematic cuts and background. Data from 1989 run, reanalysed.
The analyzing power in inclusive charged pion production has been measured using the 200 GeV Fermilab polarized proton beam. A striking dependence in x F is observed in which A N increases from 0 to 0.42 with increasing x F for the π + data and decreases from 0 to −0.38 with increasing x F for π − data. The kinematic range covered is 0.2⩽ x F ⩽0.9 and 0.2⩽ p T ⩽2.0 GeV / c . In a simple model our data indicate that at large x F the transverse spin of the proton is correlated with that of its quark constituents.
Integrated over all PT.
Integrated over all PT.
No description provided.
Using the CLEO detector at the Cornell Electron Storage Ring, we observe B-meson decays to Λc+ and report on improved measurements of inclusive branching fractions and momentum spectra of other baryons. For the inclusive decay B¯→Λc+X with Λc+→pK−π+, we find that the product branching fraction B(B¯→Λc+X)B(Λc+→pK−π+)=(0.273±0.051±0.039)%. Our measured inclusive branching fractions to noncharmed baryons are B(B→pX)=(8.0±0.5±0.3)%, B(B→ΛX)=(3.8±0.4±0.6)%, and B(B→Ξ−X)=(0.27±0.05±0.04)%. From these rates and studies of baryon-lepton and baryon-antibaryon correlations in B decays, we have estimated the branching fraction B(B¯→Λc+X) to be (6.4±0.8±0.8)%. Combining these results, we calculate B(Λc+→pK−π+) to be (4.3±1.0±0.8)%.
No description provided.
No description provided.
No description provided.
A factorial moment analysis has been performed on the differential multiplicity distributions of hadronic final states of the Z 0 recorded with the OPAL detector at LEP. The moments of the one-dimensional rapidity and the two-dimensional rapidity versus azimuthal angle distributions are found to exhibit “intermittent” behaviour attributable to the jet structure of the events. The moments are reproduced by both parton shower and matrix element QCD based hadronisation models. No evidence for fluctuations beyond those attributable to jet structure is observed.
Corrected factorial moments of the rapidity distribution with respect to the sphericity axis. The errors shown are statistical only but include the statistical error onthe correction factor, added in quadrature.
Corrected factorial moments of the rapidity distribution with respect to the electron beam axis. The errors shown are statistical only but include the statistical error onthe correction factor, added in quadrature.
Corrected factorial moments of the rapidity (with respect to the sphericityaxis) versus PHI distribution. For each point the NUMBER of bins are constructe d from equal numbers of YRAP and PHI bins. The errors shown are statistical only but include the statistical error onthe correction factor, added in quadrature.
The absolute p-d elastic-scattering differential cross sections were measured at 641.3 and 792.7 MeV beam energies over a range of c.m. angles from ∼35° to ∼115° and ∼35° to ∼140°, respectively. The longitudinally polarized (L-type) proton beam produced by the Lamb-shift ion source at LAMPF was used. The beam intensity was measured to high accuracy (∼0.1%) by a scintillator-beam particle-counting system designed and developed prior to the experiment. Typical uncertainties in the absolute cross sections were about 2–3% total, somewhat larger at back angles. The present results were compared with the existing measurements and the controversy about the previous data at 800 MeV was resolved. The present data can be fit with a relativistic multiple-scattering theory which uses off-mass-shell extrapolations of the nucleon-nucleon amplitudes suggested by the structure of derivative meson-nucleon couplings. Relativistic-impulse-approximation calculations do not fit these data at either energy.
TARGET IS A LIQUID DEUTERIUM. THE LABORATORY ANGLES BIN SIZES ARE 30 MRAD AT FORWARD ANGLES AND 50 MRAD AT OTHER ANGLES.
TARGET IS A LIQUID DEUTERIUM. THE DATA IN THIS TABLE ARE THE SAME AS IN THE TABLE 1, BUT IN THE ANOTHER REPRESENTATION.
TARGET IS A LIQUID DEUTERIUM. THE DATA IN THIS TABLE ARE THE SAME AS IN THE TABLE 1, BUT IN THE ANOTHER REPRESENTATION.
The two-spin parameter A LL in inclusive π 0 productionby longitudinally-polarized protons and antiprotons on a longitudinally-polarized proton target has been measured at the 200 GeV Fermilab spin physics facility, for π 0 's at x F =0 with 1⩽ p t ⩽3 GeV/ c . The results exclude, at the 95% confidence level, values of A LL (pp) > 0.1 and < − 0.1 for π 0 's produced by protons, and values of A LL ( p p) > 0.1 and < −0.2 for incident antiprotons. The relevance of A LL (pp) for the gluon spin density is discussed. The data are in good agreement with “conventional”, small or zero, gluon polarization.
No description provided.
A measurement of the single-spin asymmetry A N in p↑ + p→ π 0 + X at 200 GeV with x F = 0 shows a transition in the production process from a “ low -x T ” regime with A N = 0, through an intermediate region of negative asymmetry, to a “ high -x T ” regime with A N > 0.3. This transition occurs at x T ≈ 0.4 and is consistent with x T -scaling of A N in pion production using polarized beams or targets from √− s =5.2 to 19.4 GeV. Results for A N in η production by polarized protons and in π 0 production by polarized antiprotons are also presented.
Statistical errors only.
Statistical errors only.
Statistical errors only.
None
No description provided.
P P data are taken from Adams et al, Fermilab-Pub-91/13-E.
Ratio of the spin averaged invariant cross section for PI0 production in p p and pbar p interactions.