Date

Search for new physics in final states with semi-visible jets or anomalous signatures using the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Phys.Rev.D 112 (2025) 012021, 2025.
Inspire Record 2918816 DOI 10.17182/hepdata.159761

A search is presented for hadronic signatures of beyond the Standard Model (BSM) physics, with an emphasis on signatures of a strongly-coupled hidden dark sector accessed via resonant production of a $Z'$ mediator. The ATLAS experiment dataset collected at the Large Hadron Collider from 2015 to 2018 is used, consisting of proton-proton collisions at $\sqrt{s}$ = 13 TeV and corresponding to an integrated luminosity of 140 fb$^{-1}$. The $Z'$ mediator is considered to decay to two dark quarks, which each hadronize and decay to showers containing both dark and Standard Model particles, producing a topology of interacting and non-interacting particles within a jet known as ``semi-visible". Machine learning methods are used to select these dark showers and reject the dominant background of mismeasured multijet events, including an anomaly detection approach to preserve broad sensitivity to a variety of BSM topologies. A resonance search is performed by fitting the transverse mass spectrum based on a functional form background estimation. No significant excess over the expected background is observed. Results are presented as limits on the production cross section of semi-visible jet signals, parameterized by the fraction of invisible particles in the decay and the $Z'$ mass, and by quantifying the significance of any generic Gaussian-shaped mass peak in the anomaly region.

6 data tables

Acceptance times efficiency weighted yields across the signal grid.

The 95% CL limits on the cross-section $\sigma(pp \rightarrow Z' \rightarrow \chi \chi$) times branching ratio B in fb with all statistical and systematic uncertainties, for the $R_{\text{inv}}=$0.2 signal points.

The 95% CL limits on the cross-section $\sigma(pp \rightarrow Z' \rightarrow \chi \chi$) times branching ratio B in fb with all statistical and systematic uncertainties, for the $R_{\text{inv}}=$0.4 signal points.

More…

Femtoscopic study of the proton-proton and proton-deuteron systems in heavy-ion collisions at the LHC

The ALICE collaboration Acharya, Shreyasi ; Aglieri Rinella, Gianluca ; Aglietta, Luca ; et al.
CERN-EP-2025-096, 2025.
Inspire Record 2917986 DOI 10.17182/hepdata.165812

This work reports femtoscopic correlations of p$-$p ($\bar{\rm p}-\bar{\rm p}$) and p$-$d ($\bar{\rm p}-\bar{\rm d}$) pairs measured in Pb$-$Pb collisions at center-of-mass energy $\sqrt{s_{\rm NN}}$ = 5.02 TeV by the ALICE Collaboration. A fit to the measured proton-proton correlation functions allows one to extract the dependence of the nucleon femtoscopic radius of the particle-emitting source on the pair transverse mass ($m_\text{T}$) and on the average charge particle multiplicity $\langle\text{dN}_\text{ch}/\text{d}\eta\rangle^{1/3}$ for three centrality intervals (0$-$10$\%$, 10$-$30$\%$, 30$-$50$\%$). In both cases, the expected power-law and linear scalings are observed, respectively. The measured p$-$d correlations can be described by both two- and three-body calculations, indicating that the femtoscopy observable is not sensitive to the short-distance features of the dynamics of the p$-$(p$-$n) system, due to the large inter-particle distances in Pb$-$Pb collisions at the LHC. Indeed, in this study, the minimum measured femtoscopic source sizes for protons and deuterons have a minimum value at $2.73^{+0.05}_{-0.05}$ and $3.10^{+1.04}_{-0.86}$ fm, respectively, for the 30$-$50$\%$ centrality collisions. Moreover, the $m_{\rm{T}}$-scaling obtained for the p$-$p and p$-$d systems is compatible within 1$\sigma$ of the uncertainties. These findings provide new input for fundamental studies on the production of light (anti)nuclei under extreme conditions.

23 data tables

proton-proton (same charge) correlation function for centrality 0-10% from Pb-Pb collisions at 5020 GeV

proton-proton (same charge) correlation function for centrality 10-30% from Pb-Pb collisions at 5020 GeV

proton-proton (same charge) correlation function for centrality 30-50% from Pb-Pb collisions at 5020 GeV

More…

Observation of a Three-Resonance Structure in the Cross Section of $e^+e^-\to\pi^+\pi^- h_c$

The BESIII collaboration Ablikim, Medina ; Achasov, Mikhail N. ; Adlarson, Patrik Adlarsson ; et al.
2025.
Inspire Record 2908630 DOI 10.17182/hepdata.160247

Using $e^+e^-$ collision data collected with the BESIII detector operating at the Beijing Electron Positron Collider, the cross section of $e^+e^-\to \pi^+\pi^- h_c$ is measured at 59 points with center-of-mass energy $\sqrt{s}$ ranging from $4.009$ to $4.950~\mathrm{GeV}$ with a total integrated luminosity of $22.2~\mathrm{fb}^{-1}$. The cross section between $4.3$ and $4.45~\mathrm{GeV}$ exhibits a plateau-like shape and drops sharply around $4.5~\mathrm{GeV}$, which cannot be described by two resonances only. Three coherent Breit-Wigner functions are used to parameterize the $\sqrt{s}$-dependent cross section line shape. The masses and widths are determined to be $M_1=(4223.6_{-3.7-2.9}^{+3.6+2.6})~\mathrm{MeV}/c^2$, $\Gamma_1=(58.5_{-11.4-6.5}^{+10.8+6.7})~\mathrm{MeV}$, $M_2=(4327.4_{-18.8-9.3}^{+20.1+10.7})~\mathrm{MeV}/c^2$, $\Gamma_2=(244.1_{-27.1-18.0}^{+34.0+23.9})~\mathrm{MeV}$, and $M_3=(4467.4_{-5.4-2.7}^{+7.2+3.2})~\mathrm{MeV}/c^2$, $\Gamma_3=(62.8_{-14.4-6.6}^{+19.2+9.8})~\mathrm{MeV}$. The first uncertainties are statistical and the other two are systematic. The statistical significance of the three Breit-Wigner assumption over the two Breit-Wigner assumption is greater than $5\sigma$.

3 data tables

Dressed cross section at the 19 XYZ-I energy points with large statistics. The table also lists the integral luminosity, the number of signal events, the weighted efficiency, the radiative correction factor, and the dressed cross section. For the dressed cross section, the first error is statistical, the second error is the systematic, and the third error comes from the input branching ratios which is the dominant one in the multiplicative systematic uncertainties.

Dressed cross section at the 25 XYZ-II energy points with lower statistics. The table also lists the integral luminosity, the number of signal events, the weighted efficiency, the radiative correction factor, and the dressed cross section. For the dressed cross section, the first error is statistical, the second error is the systematic, and the third error comes from the input branching ratios which is the dominant one in the multiplicative systematic uncertainties.

Dressed cross section and its upper limit at the 15 R-scan energy points with small statistics. The table also lists the integral luminosity, the number of signal events, the weighted efficiency, the radiative correction factor, and the dressed cross section. For the dressed cross section, the first error is statistical, the second error is the systematic, and the third error comes from the input branching ratios which is the dominant one in the multiplicative systematic uncertainties.


Revealing the microscopic mechanism of deuteron formation at the LHC

The ALICE collaboration Acharya, Shreyasi ; Agarwal, Apar ; Aglieri Rinella, Gianluca ; et al.
CERN-EP-2025-081, 2025.
Inspire Record 2907586 DOI 10.17182/hepdata.165804

The formation of light (anti)nuclei with mass number A of a few units (e.g., d, $^3$He, and $^4$He) in high-energy hadronic collisions presents a longstanding mystery in nuclear physics [1,2]. It is not clear how nuclei bound by a few MeV can emerge in environments characterized by temperatures above 100 MeV [3-5], about 100,000 times hotter than the center of the Sun. Despite extensive studies, this question remained unanswered. The ALICE Collaboration now addresses it with a novel approach using deuteron-pion momentum correlations in proton-proton (pp) collisions at the Large Hadron Collider (LHC). Our results provide model-independent evidence that about 80% of the observed (anti)deuterons are produced in nuclear fusion reactions [6] following the decay of short-lived resonances, such as the $\Delta (1232)$. These findings resolve a crucial gap in our understanding of nucleosynthesis in hadronic collisions. Beyond answering the fundamental question on how nuclei are formed in hadronic collisions, the results can be employed in the modeling of the production of light and heavy nuclei in cosmic rays [7] and dark matter decays [8,9].

7 data tables

Measured $\pi^{+}$–d$\oplus\pi^{-}$–$\overline{\mathrm{d}}$ (left panel) correlation function.

Measured $\pi^{-}$–d$\oplus\pi^{+}$–$\overline{\mathrm{d}}$ (right panel) correlation function.

The extracted kinetic decoupling temperature is derived from $\pi^{+}$–d correlation functions.

More…

D$^{0}$-meson-tagged jet axes difference in proton-proton collisions at $\mathbf{\sqrt{\textit{s}} = 5.02}$ TeV

The ALICE collaboration Acharya, Shreyasi ; Agarwal, Apar ; Aglieri Rinella, Gianluca ; et al.
CERN-EP-2025-083, 2025.
Inspire Record 2907593 DOI 10.17182/hepdata.165764

Heavy-flavor quarks produced in proton-proton (pp) collisions provide a unique opportunity to investigate the evolution of quark-initiated parton showers from initial hard scatterings to final-state hadrons. By examining jets that contain heavy-flavor hadrons, this study explores the effects of both perturbative and non-perturbative QCD on jet formation and structure. The angular differences between various jet axes, $\Delta R_{\rm axis}$, offer insight into the radiation patterns and fragmentation of charm quarks. The first measurement of D$^{0}$-tagged jet axes differences in pp collisions at $\sqrt{s}=5.02$ TeV by the ALICE experiment at the LHC is presented for jets with transverse momentum $p_{\rm T}^{\rm ch~jet} \geq 10$${\rm GeV}/c$ and D$^0$ mesons with $p_{\rm T}^{\rm D^{0}} \geq 5$${\rm GeV}/c$. In this D$^0$-meson-tagged jet measurement, three jet axis definitions, each with different sensitivities to soft, wide-angle radiation, are used: the Standard axis, Soft Drop groomed axis, and Winner-Takes-All axis. Measurements of the radial distributions of D$^0$ mesons with respect to the jet axes, $\Delta R_{\mathrm{axis-D^0}}$, are reported, along with the angle, $\Delta R_{\mathrm{axis}}$, between the three jet axes. The D$^{0}$ meson emerges as the leading particle in these jets, closely aligning with the Winner-Takes-All axis and diverging from the Standard jet axis. The results also examine how varying the sensitivity to soft radiation with grooming influences the orientation of the Soft Drop jet axis, and uncover that charm-jet structure is more likely to survive grooming when the Soft Drop axis is further from the D$^{0}$ direction, providing further evidence of the dead-cone effect recently measured by ALICE.

16 data tables

$\Delta R_{\rm axis}$ distribution for $\rm STD-D^0$ for $\rm D^0$-tagged jets of $R=0.4$, in the intervals $10<p_{\rm T}^{\rm ch \ jet}<20 \ {\rm GeV}/c$ and $5<p_{\rm T}^{\rm D^0}<20 \ {\rm GeV}/c$.

$\Delta R_{\rm axis}$ distribution for $\rm WTA-D^0$ for $\rm D^0$-tagged jets of $R=0.4$, in the intervals $10<p_{\rm T}^{\rm ch \ jet}<20 \ {\rm GeV}/c$ and $5<p_{\rm T}^{\rm D^0}<20 \ {\rm GeV}/c$.

$\Delta R_{\rm axis}$ distribution for $\rm STD-WTA$ for $\rm D^0$-tagged jets of $R=0.4$, in the intervals $10<p_{\rm T}^{\rm ch \ jet}<20 \ {\rm GeV}/c$ and $5<p_{\rm T}^{\rm D^0}<20 \ {\rm GeV}/c$.

More…

Multiplicity-dependent inclusive J/$\psi$ production at forward rapidity in pp collisions at $\mathbf{\sqrt{s} = 13}$ TeV

The ALICE collaboration Acharya, Shreyasi ; Agarwal, Apar ; Aglieri Rinella, Gianluca ; et al.
JHEP 07 (2025) 238, 2025.
Inspire Record 2906995 DOI 10.17182/hepdata.159409

This paper presents a study of the inclusive forward J/$\psi$ yield as a function of forward charged-particle multiplicity in pp collisions at $\sqrt{s} = 13$ TeV using data collected by the ALICE experiment at the CERN LHC. The results are presented in terms of relative J/$\psi$ yields and relative charged-particle multiplicities with respect to these quantities obtained in inelastic collisions having at least one charged particle in the pseudorapidity range $|\eta| < 1$. The J/$\psi$ mesons are reconstructed via their decay into $\mu^+ \mu^-$ pairs in the forward rapidity region ($2.5 < y < 4$). The relative multiplicity is estimated in the forward pseudorapidity range $-3.7 < \eta < -1.7$, which overlaps with the J/$\psi$ rapidity region. The results show a steeper-than-linear increase of the J/$\psi$ yields versus the multiplicity. They are compared with previous measurements and theoretical model calculations.

1 data table

Forward inclusive J/$\psi$ relative yield as a function of the relative multiplicity in −3.7 < $\eta$ < −1.7 in INEL > 0 pp collisions at $\sqrt{s}$ = 13 TeV.


Measurement of Spin-Density Matrix Elements in $ϕ(1020)\to K_S^0K_L^0$ Photoproduction with a Linearly Polarized Photon Beam at $E_γ=8.2-8.8$ GeV

The GlueX collaboration Afzal, F. ; Akondi, C.S. ; Albrecht, M. ; et al.
Phys.Rev.C 112 (2025) 025203, 2025.
Inspire Record 2907183 DOI 10.17182/hepdata.160000

We measure the spin-density matrix elements (SDMEs) for the photoproduction of $ϕ(1020)$ off of the proton in its decay to $K_S^0K_L^0$, using 105 pb$^{-1}$ of data collected with a linearly polarized photon beam using the GlueX experiment. The SDMEs are measured in nine bins of the squared four-momentum transfer $t$ in the range $-t=0.15-1.0$ GeV$^2$, providing the first measurement of their $t$-dependence for photon beam energies $E_γ= 8.2-8.8$ GeV. We confirm the dominance of Pomeron exchange in this region, and put constraints on the contribution of other Regge exchanges. We also find that helicity amplitudes where the helicity of the photon and the $ϕ(1020)$ differ by two units are negligible.

1 data table

Spin-density matrix elements of $\phi(1020)$ mesons produced by a linearly polarized photon beam in the helicity system. For each bin of $-t$, the limits of the bin range are given, along with the average $-\bar t$ and root-mean-square deviation $-t_\text{RMS}$ of all events that fall within the bin.


First measurement of D$^{*+}$ vector spin alignment in Pb-Pb collisions at $\mathbf{\sqrt{s_{\rm NN}} = 5.02}$ TeV

The ALICE collaboration Acharya, Shreyasi ; Agarwal, Apar ; Aglieri Rinella, Gianluca ; et al.
JHEP 10 (2025) 094, 2025.
Inspire Record 2906994 DOI 10.17182/hepdata.165763

The first measurement of prompt D$^{*+}$-meson spin alignment in ultrarelativistic heavy-ion collisions with respect to the direction orthogonal to the reaction plane is presented. The spin alignment is quantified by measuring the element $\rho_{00}$ of the diagonal spin-density matrix for prompt D$^{*+}$ mesons with $4<p_{\rm T}<30$ GeV/$c$ in two rapidity intervals, $|y|<0.3$ and $0.3<|y|<0.8$, in central (0-10%) and midcentral (30-50%) Pb-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV. Evidence of spin alignment $\rho_{00}>1/3$ has been found for $p_{\rm T}>15$ GeV/$c$ and $0.3<|y|<0.8$ with a significance of $3.1\sigma$. The measured spin alignment of prompt D$^{*+}$ mesons is compared with the one of inclusive J/$\psi$ mesons measured at forward rapidity ($2.5 < y < 4$).

3 data tables

$\rho_{00}$ of prompt D$^{*\pm}$ mesons as a function of transverse momentum ($p_{\rm T}$) in the rapidity interval $0.0 < |y| < 0.3$ for mid-central (30--50\%) Pb--Pb collisions at $\sqrt{s_{\rm NN}}=5.02~TeV$.

$\rho_{00}$ of prompt D$^{*\pm}$ mesons as a function of transverse momentum ($p_{\rm T}$) in the rapidity interval $0.3 < |y| < 0.8$ for mid-central (30--50\%) Pb--Pb collisions at $\sqrt{s_{\rm NN}}=5.02~TeV$.

$\rho_{00}$ of prompt D$^{*\pm}$ mesons as a function of transverse momentum ($p_{\rm T}$) in the rapidity interval $0.0 < |y| < 0.3$ for central (0--10\%) Pb--Pb collisions at $\sqrt{s_{\rm NN}}=5.02~TeV$.


Evidence for the collective nature of radial flow in Pb+Pb collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
CERN-EP-2025-068, 2025.
Inspire Record 2907010 DOI 10.17182/hepdata.158359

Anisotropic flow and radial flow are two key probes of the expansion dynamics and properties of the quark-gluon plasma (QGP). While anisotropic flow has been extensively studied, radial flow, which governs the system's radial expansion, has received less attention. Notably, experimental evidence for the global and collective nature of radial flow has been lacking. This Letter presents the first measurement of transverse momentum ($p_{\mathrm{T}}$) dependence of radial flow fluctuations ($v_0(p_{\mathrm{T}})$) over $0.5<p_{\mathrm{T}}<10$ GeV, using a two-particle correlation method in Pb+Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV. The data reveal three key features supporting the collective nature of radial flow: long-range correlation in pseudorapidity, factorization in $p_{\mathrm{T}}$, and centrality-independent shape in $p_{\mathrm{T}}$. The comparison with a hydrodynamic model demonstrates the sensitivity of $v_0(p_{\mathrm{T}})$ to bulk viscosity, a crucial transport property of the QGP. These findings establish a new, powerful tool for probing collective dynamics and properties of the QGP.

99 data tables

Data from Figure 2, panel a, $v_{0}$

Data from Figure 2, panel c, upper panel, Normalized Covariance $\times 10^{3}$ in 0-5% Centrality

Data from Figure 2, panel c, lower panel, Normalized Covariance $\times 10^{3}$ in 50-60% Centrality

More…

Search for electroweak production of vector-like leptons in $\tau$-lepton and $b$-jet final states in $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
CERN-EP-2025-055, 2025.
Inspire Record 2905977 DOI 10.17182/hepdata.158820

A search for pair-production of vector-like leptons is presented, considering their decays into a third-generation Standard Model (SM) quark and a vector leptoquark ($U_1$) as predicted by an ultraviolet-complete extension of the SM, referred to as the '4321' model. Given the assumed decay of $U_1$ into third-generation SM fermions, the final state can contain multiple $\tau$-leptons and $b$-quarks. This search is based on a dataset of $pp$ collisions at $\sqrt{s}=13$ TeV recorded with the ATLAS detector during Run 2 of the Large Hadron Collider, corresponding to an integrated luminosity of up to 140 fb$^{-1}$. No significant excess above the SM background prediction is observed, and 95% confidence level limits on the cross-section times branching ratio are derived as a function of the vector-like lepton mass. A lower observed (expected) limit of 910 GeV (970 GeV) is set on the vector-like lepton mass. Additionally, the results are interpreted for a supersymmetric model with an $R$-parity violating coupling to the third-generation quarks and leptons. Lower observed (expected) limits are obtained on the higgsino mass at 880 GeV (940 GeV) and on the wino mass at 1170 GeV (1170 GeV).

8 data tables

Observed (solid line with markers) and expected (dashed line) 95&percnt; CL upper limits on the VLL pair production cross-section (&sigma;<sub>VLL</sub>) times branching ratio (BR) to third generation quarks and leptons as a function of m<sub>VLL</sub>. The limits presented in black lines are obtained after combining all five signal regions. The inner green (outer yellow) band corresponds to the &plusmn;1 &sigma; (&plusmn;2 &sigma;) uncertainty around the combined expected limit. The 95&percnt; CL expected upper limits in the three individual channels (1&tau;<sub>had</sub> &ge;3b MST, 1&tau;<sub>had</sub> &ge;3b BJET and &ge;2&tau;<sub>had</sub> &ge;3b MSDT) are shown for comparison. The solid red line represents the theory prediction of the VLL pair production cross-section at NLO in QCD.

Observed (solid line with markers) and expected (dashed line) 95&percnt; CL upper limits on the higgsino pair production cross-section (&sigma;<sub>higgsino</sub>) times branching ratio (BR) to third generation quarks and leptons as a function of m<sub>higgsino</sub>. The limits presented in black lines are obtained after combining all five signal regions. The inner green (outer yellow) band corresponds to the &plusmn;1 &sigma; (&plusmn;2 &sigma;) uncertainty around the combined expected limit. The 95&percnt; CL expected upper limits in the three individual channels (1&tau;<sub>had</sub> &ge;3b MST, 1&tau;<sub>had</sub> &ge;3b BJET and &ge;2&tau;<sub>had</sub> &ge;3b MSDT) are shown for comparison. The solid red line represents the theory prediction of the higgsino pair production cross-section at NLO in QCD.

Observed (solid line with markers) and expected (dashed line) 95&percnt; CL upper limits on the wino pair production cross-section (&sigma;<sub>wino</sub>) times branching ratio (BR) to third generation quarks and leptons as a function of m<sub>wino</sub>. The limits presented in black lines are obtained after combining all five signal regions. The surrounding inner green (outer yellow) band corresponds to the &plusmn;1 &sigma; (&plusmn;2 &sigma;) uncertainty around the combined expected limit. The 95&percnt; CL expected upper limits in the three individual channels (1&tau;<sub>had</sub> &ge;3b MST, 1&tau;<sub>had</sub> &ge;3b BJET and &ge;2&tau;<sub>had</sub> &ge;3b MSDT) are shown for comparison. The solid red line represents the theory prediction of the wino pair production cross-section at NLO in QCD.

More…