A search for flavour-changing neutral current (FCNC) events via the coupling of a top quark, a photon, and an up or charm quark is presented using 81 fb$^{-1}$ of proton-proton collision data taken at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC. Events with a photon, an electron or muon, a $b$-tagged jet, and missing transverse momentum are selected. A neural network based on kinematic variables differentiates between events from signal and background processes. The data are consistent with the background-only hypothesis, and limits are set on the strength of the $tq\gamma$ coupling in an effective field theory. These are also interpreted as 95% CL upper limits on the cross section for FCNC $t\gamma$ production via a left-handed (right-handed) $tu\gamma$ coupling of 36 fb (78 fb) and on the branching ratio for $t\rightarrow \gamma u$ of $2.8\times 10^{-5}$ ($6.1\times 10^{-5}$). In addition, they are interpreted as 95% CL upper limits on the cross section for FCNC $t\gamma$ production via a left-handed (right-handed) $tc\gamma$ coupling of 40 fb (33 fb) and on the branching ratio for $t\rightarrow \gamma c$ of $22\times 10^{-5}$ ($18\times 10^{-5}$).
Post-fit distributions of a background-only fit to the signal region (SR) and the control regions (CRs) of the NN output in the SR. In addition, the expected signal is overlaid for an effective coupling strength corresponding to the observed limit multiplied by a factor of ten.
Observed (expected) 95 % CL limits on the effective coupling strengths for different vertices and couplings, the production cross section, and the branching ratio. For the former, the energy scale is assumed to be $\Lambda$ = 1 TeV.
Post-fit distributions of a background-only fit to the SR and the CRs of the NN output in the SR for the $tu\gamma$ right-handed coupling. In addition, the expected signal is overlaid for an effective coupling strength corresponding to the observed limit multiplied by a factor of ten.
A search for the production of three massive vector bosons in proton--proton collisions is performed using data at $\sqrt{s}=13\,TeV$ recorded with the ATLAS detector at the Large Hadron Collider in the years 2015--2017, corresponding to an integrated luminosity of $79.8\,\text{fb}^{-1}$. Events with two same-sign leptons $\ell$ (electrons or muons) and at least two reconstructed jets are selected to search for $WWW\to\ell\nu\ell\nu qq$. Events with three leptons without any same-flavour opposite-sign lepton pairs are used to search for $WWW\to\ell\nu\ell\nu\ell\nu$, while events with three leptons and at least one same-flavour opposite-sign lepton pair and one or more reconstructed jets are used to search for $WWZ\to\ell\nu qq \ell\ell$. Finally, events with four leptons are analysed to search for $WWZ\to\ell\nu\ell\nu\ell\ell$ and $WZZ\to qq \ell\ell\ell\ell$. Evidence for the joint production of three massive vector bosons is observed with a significance of 4.0 standard deviations, where the expectation is 3.1 standard deviations.
A search for a heavy charged-boson resonance decaying into a charged lepton (electron or muon) and a neutrino is reported. A data sample of 139 fb$^{-1}$ of proton-proton collisions at $\sqrt{s} = 13$ TeV collected with the ATLAS detector at the LHC during 2015-2018 is used in the search. The observed transverse mass distribution computed from the lepton and missing transverse momenta is consistent with the distribution expected from the Standard Model, and upper limits on the cross section for $pp \to W^\prime \to \ell\nu$ are extracted ($\ell = e$ or $\mu$). These vary between 1.3 pb and 0.05 fb depending on the resonance mass in the range between 0.15 and 7.0 TeV at 95% confidence level for the electron and muon channels combined. Gauge bosons with a mass below 6.0 TeV and 5.1 TeV are excluded in the electron and muon channels, respectively, in a model with a resonance that has couplings to fermions identical to those of the Standard Model $W$ boson. Cross-section limits are also provided for resonances with several fixed $\Gamma / m$ values in the range between 1% and 15%. Model-independent limits are derived in single-bin signal regions defined by a varying minimum transverse mass threshold. The resulting visible cross-section upper limits range between 4.6 (15) pb and 22 (22) ab as the threshold increases from 130 (110) GeV to 5.1 (5.1) TeV in the electron (muon) channel.
Upper limits at the 95% CL on the cross section for SSM $W^\prime$ production and decay to the electron+neutrino channel as a function of the $W^\prime$ pole mass.
Upper limits at the 95% CL on the cross section for SSM $W^\prime$ production and decay to the muon+neutrino channel as a function of the $W^\prime$ pole mass.
Combined (electron and muon channels) upper limits at the 95% CL on the cross section for SSM $W^\prime$ production and decay to a single lepton generation as a function of the $W^\prime$ pole mass.
A search for long-lived particles decaying into hadrons is presented. The analysis uses 139 fb$^{-1}$ of $pp$ collision data collected at $\sqrt{s} = 13$ TeV by the ATLAS detector at the LHC using events that contain multiple energetic jets and a displaced vertex. The search employs dedicated reconstruction techniques that significantly increase the sensitivity to long-lived particles decaying in the ATLAS inner detector. Background estimates for Standard Model processes and instrumental effects are extracted from data. The observed event yields are compatible with those expected from background processes. The results are used to set limits at 95% confidence level on model-independent cross sections for processes beyond the Standard Model, and on scenarios with pair-production of supersymmetric particles with long-lived electroweakinos that decay via a small $R$-parity-violating coupling. The pair-production of electroweakinos with masses below 1.5 TeV is excluded for mean proper lifetimes in the range from 0.03 ns to 1 ns. When produced in the decay of $m(\tilde{g})=2.4$ TeV gluinos, electroweakinos with $m(\tilde\chi^0_1)=1.5$ TeV are excluded with lifetimes in the range of 0.02 ns to 4 ns.
<b>Tables of Yields:</b> <a href="?table=validation_regions_yields_highpt_SR">Validation Regions Summary Yields, High-pT jet selections</a> <a href="?table=validation_regions_yields_trackless_SR">Validiation Regions Summary Yields, Trackless jet selections</a> <a href="?table=yields_highpt_SR_observed">Signal region (and sidebands) observed yields, High-pT jet selections</a> <a href="?table=yields_highpt_SR_expected">Signal region (and sidebands) expected yields, High-pT jet selections</a> <a href="?table=yields_trackless_SR_observed">Signal region (and sidebands) observed yields, Trackless jet selections</a> <a href="?table=yields_trackless_SR_expected">Signal region (and sidebands) expected yields, Trackless jet selections</a> <b>Exclusion Contours:</b> <a href="?table=excl_ewk_exp_nominal">EWK RPV signal; expected, nominal</a> <a href="?table=excl_ewk_exp_up">EWK RPV signal; expected, $+1\sigma$</a> <a href="?table=excl_ewk_exp_down">EWK RPV signal; expected, $-1\sigma$</a> <a href="?table=excl_ewk_obs_nominal">EWK RPV signal; observed, nominal</a> <a href="?table=excl_ewk_obs_up">EWK RPV signal; observed, $+1\sigma$</a> <a href="?table=excl_ewk_obs_down">EWK RPV signal; observed, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2400_GeV_exp_nominal">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; expected, nominal</a> <a href="?table=excl_strong_mgluino_2400_GeV_exp_up">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2400_GeV_exp_down">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2400_GeV_obs_nominal">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; observed, nominal</a> <a href="?table=excl_strong_mgluino_2400_GeV_obs_up">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2400_GeV_obs_down">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; observed, $-1\sigma$</a> <a href="?table=excl_xsec_ewk">EWK RPV signal; cross-section limits for fixed lifetime values.</a> <a href="?table=excl_xsec_strong_mgluino_2400">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; cross-section limits for fixed lifetime values.</a> <a href="?table=excl_strong_mgluino_2000_GeV_exp_nominal">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; expected, nominal</a> <a href="?table=excl_strong_mgluino_2000_GeV_exp_up">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2000_GeV_exp_down">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2000_GeV_obs_nominal">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; observed, nominal</a> <a href="?table=excl_strong_mgluino_2000_GeV_obs_up">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2000_GeV_obs_down">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; observed, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2200_GeV_exp_nominal">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; expected, nominal</a> <a href="?table=excl_strong_mgluino_2200_GeV_exp_up">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2200_GeV_exp_down">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2200_GeV_obs_nominal">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; observed, nominal</a> <a href="?table=excl_strong_mgluino_2200_GeV_obs_up">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2200_GeV_obs_down">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; observed, $-1\sigma$</a> <a href="?table=excl_strong_mchi0_50_GeV_exp_nominal">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; expected, nominal</a> <a href="?table=excl_strong_mchi0_50_GeV_exp_up">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mchi0_50_GeV_exp_down">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mchi0_50_GeV_obs_nominal">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; observed, nominal</a> <a href="?table=excl_strong_mchi0_50_GeV_obs_up">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mchi0_50_GeV_obs_down">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; observed, $-1\sigma$</a> <a href="?table=excl_strong_mchi0_450_GeV_exp_nominal">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; expected, nominal</a> <a href="?table=excl_strong_mchi0_450_GeV_exp_up">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mchi0_450_GeV_exp_down">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mchi0_450_GeV_obs_nominal">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; observed, nominal</a> <a href="?table=excl_strong_mchi0_450_GeV_obs_up">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mchi0_450_GeV_obs_down">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; observed, $-1\sigma$</a> <a href="?table=excl_strong_tau_0p01_ns_exp_nominal">Strong RPV signal, $\tau$=0.01 ns; expected, nominal</a> <a href="?table=excl_strong_tau_0p01_ns_exp_up">Strong RPV signal, $\tau$=0.01 ns; expected, $+1\sigma$</a> <a href="?table=excl_strong_tau_0p01_ns_exp_down">Strong RPV signal, $\tau$=0.01 ns; expected, $-1\sigma$</a> <a href="?table=excl_strong_tau_0p01_ns_obs_nominal">Strong RPV signal, $\tau$=0.01 ns; observed, nominal</a> <a href="?table=excl_strong_tau_0p01_ns_obs_up">Strong RPV signal, $\tau$=0.01 ns; observed, $+1\sigma$</a> <a href="?table=excl_strong_tau_0p01_ns_obs_down">Strong RPV signal, $\tau$=0.01 ns; observed, $-1\sigma$</a> <a href="?table=excl_strong_tau_0p1_ns_exp_nominal">Strong RPV signal, $\tau$=0.10 ns; expected, nominal</a> <a href="?table=excl_strong_tau_0p1_ns_exp_up">Strong RPV signal, $\tau$=0.10 ns; expected, $+1\sigma$</a> <a href="?table=excl_strong_tau_0p1_ns_exp_down">Strong RPV signal, $\tau$=0.10 ns; expected, $-1\sigma$</a> <a href="?table=excl_strong_tau_0p1_ns_obs_nominal">Strong RPV signal, $\tau$=0.10 ns; observed, nominal</a> <a href="?table=excl_strong_tau_0p1_ns_obs_up">Strong RPV signal, $\tau$=0.10 ns; observed, $+1\sigma$</a> <a href="?table=excl_strong_tau_0p1_ns_obs_down">Strong RPV signal, $\tau$=0.10 ns; observed, $-1\sigma$</a> <a href="?table=excl_strong_tau_1_ns_exp_nominal">Strong RPV signal, $\tau$=1.00 ns; expected, nominal</a> <a href="?table=excl_strong_tau_1_ns_exp_up">Strong RPV signal, $\tau$=1.00 ns; expected, $+1\sigma$</a> <a href="?table=excl_strong_tau_1_ns_exp_down">Strong RPV signal, $\tau$=1.00 ns; expected, $-1\sigma$</a> <a href="?table=excl_strong_tau_1_ns_obs_nominal">Strong RPV signal, $\tau$=1.00 ns; observed, nominal</a> <a href="?table=excl_strong_tau_1_ns_obs_up">Strong RPV signal, $\tau$=1.00 ns; observed, $+1\sigma$</a> <a href="?table=excl_strong_tau_1_ns_obs_down">Strong RPV signal, $\tau$=1.00 ns; observed, $-1\sigma$</a> <a href="?table=excl_strong_tau_10_ns_exp_nominal">Strong RPV signal, $\tau$=10.00 ns; expected, nominal</a> <a href="?table=excl_strong_tau_10_ns_exp_up">Strong RPV signal, $\tau$=10.00 ns; expected, $+1\sigma$</a> <a href="?table=excl_strong_tau_10_ns_exp_down">Strong RPV signal, $\tau$=10.00 ns; expected, $-1\sigma$</a> <a href="?table=excl_strong_tau_10_ns_obs_nominal">Strong RPV signal, $\tau$=10.00 ns; observed, nominal</a> <a href="?table=excl_strong_tau_10_ns_obs_up">Strong RPV signal, $\tau$=10.00 ns; observed, $+1\sigma$</a> <a href="?table=excl_strong_tau_10_ns_obs_down">Strong RPV signal, $\tau$=10.00 ns; observed, $-1\sigma$</a> <a href="?table=excl_xsec_strong_chi0_1250">Strong RPV signal, m($\tilde{\chi}^0_1$)=1.25 TeV; cross-section limits for fixed lifetime values.</a> <br/><b>Reinterpretation Material:</b> See the attached resource (purple button on the left) or directly <a href="https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2016-08/hepdata_info.pdf">this link</a> for information about acceptance definition and about how to use the efficiency histograms below. SLHA files are also available in the reource page of this HEPData record. <a href="?table=acceptance_highpt_strong"> Acceptance cutflow, High-pT SR, Strong production.</a> <a href="?table=acceptance_trackless_ewk"> Acceptance cutflow, Trackless SR, EWK production.</a> <a href="?table=acceptance_trackless_ewk_hf"> Acceptance cutflow, Trackless SR, EWK production with heavy-flavor.</a> <a href="?table=acceptance_highpt_ewk_hf"> Acceptance cutflow, Trackless SR, EWK production with heavy-flavor.</a> <a href="?table=event_efficiency_HighPt_R_1150_mm">Reinterpretation Material: Event-level Efficiency for HighPt SR selections, R < 1150 mm</a> <a href="?table=event_efficiency_HighPt_R_1150_3870_mm">Reinterpretation Material: Event-level Efficiency for HighPt SR selections, R [1150, 3870] mm</a> <a href="?table=event_efficiency_HighPt_R_3870_mm">Reinterpretation Material: Event-level Efficiency for HighPt SR selections, R > 3870 mm</a> <a href="?table=event_efficiency_Trackless_R_1150_mm">Reinterpretation Material: Event-level Efficiency for Trackless SR selections, R < 1150 mm</a> <a href="?table=event_efficiency_Trackless_R_1150_3870_mm">Reinterpretation Material: Event-level Efficiency for Trackless SR selections, R [1150, 3870] mm</a> <a href="?table=event_efficiency_Trackless_R_3870_mm">Reinterpretation Material: Event-level Efficiency for Trackless SR selections, R > 3870 mm</a> <a href="?table=vertex_efficiency_R_22_mm">Reinterpretation Material: Vertex-level Efficiency for R < 22 mm</a> <a href="?table=vertex_efficiency_R_22_25_mm">Reinterpretation Material: Vertex-level Efficiency for R [22, 25] mm</a> <a href="?table=vertex_efficiency_R_25_29_mm">Reinterpretation Material: Vertex-level Efficiency for R [25, 29] mm</a> <a href="?table=vertex_efficiency_R_29_38_mm">Reinterpretation Material: Vertex-level Efficiency for R [29, 38] mm</a> <a href="?table=vertex_efficiency_R_38_46_mm">Reinterpretation Material: Vertex-level Efficiency for R [38, 46] mm</a> <a href="?table=vertex_efficiency_R_46_73_mm">Reinterpretation Material: Vertex-level Efficiency for R [46, 73] mm</a> <a href="?table=vertex_efficiency_R_73_84_mm">Reinterpretation Material: Vertex-level Efficiency for R [73, 84] mm</a> <a href="?table=vertex_efficiency_R_84_111_mm">Reinterpretation Material: Vertex-level Efficiency for R [84, 111] mm</a> <a href="?table=vertex_efficiency_R_111_120_mm">Reinterpretation Material: Vertex-level Efficiency for R [111, 120] mm</a> <a href="?table=vertex_efficiency_R_120_145_mm">Reinterpretation Material: Vertex-level Efficiency for R [120, 145] mm</a> <a href="?table=vertex_efficiency_R_145_180_mm">Reinterpretation Material: Vertex-level Efficiency for R [145, 180] mm</a> <a href="?table=vertex_efficiency_R_180_300_mm">Reinterpretation Material: Vertex-level Efficiency for R [180, 300] mm</a> <br/><b>Cutflow Tables:</b> <a href="?table=cutflow_highpt_strong"> Cutflow (Acceptance x Efficiency), High-pT SR, Strong production.</a> <a href="?table=cutflow_trackless_ewk"> Cutflow (Acceptance x Efficiency), Trackless SR, EWK production.</a> <a href="?table=cutflow_trackless_ewk_hf"> Cutflow (Acceptance x Efficiency), Trackless SR, EWK production with heavy-flavor quarks.</a> <a href="?table=cutflow_highpt_ewk_hf"> Cutflow (Acceptance x Efficiency), High-pT SR, EWK production with heavy-flavor quarks.</a>
Two-dimensional distribution of the invariant mass $m_{DV}$ and the track multiplicity in the High-pT jet SR for expected signal events in the strong gluino pair pair production model with m(gluino)=1.8 TeV, m(chi0)=0.2 TeV, tau(chi0)=0.1 ns
Two-dimensional distribution of the invariant mass $m_{DV}$ and the track multiplicity in the Trackless jet SR for expected signal events in the electroweak pair production model
A search for the supersymmetric partners of quarks and gluons (squarks and gluinos) in final states containing jets and missing transverse momentum, but no electrons or muons, is presented. The data used in this search were recorded by the ATLAS experiment in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}$ = 13 TeV during Run 2 of the Large Hadron Collider, corresponding to an integrated luminosity of 139 fb$^{-1}$. The results are interpreted in the context of various $R$-parity-conserving models where squarks and gluinos are produced in pairs or in association and a neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 2.30 TeV for a simplified model containing only a gluino and the lightest neutralino, assuming the latter is massless. For a simplified model involving the strong production of mass-degenerate first- and second-generation squarks, squark masses below 1.85 TeV are excluded if the lightest neutralino is massless. These limits extend substantially beyond the region of supersymmetric parameter space excluded previously by similar searches with the ATLAS detector.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and neutralino in SR BDT-GGd1
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and neutralino in SR BDT-GGd2
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and neutralino in SR BDT-GGd3
A search for supersymmetry targeting the direct production of winos and higgsinos is conducted in final states with either two leptons ($e$ or $\mu$) with the same electric charge, or three leptons. The analysis uses 139 fb$^{-1}$ of $pp$ collision data at $\sqrt{s}=13$ TeV collected with the ATLAS detector during Run 2 of the Large Hadron Collider. No significant excess over the Standard Model expectation is observed. Simplified and complete models with and without $R$-parity conservation are considered. In topologies with intermediate states including either $Wh$ or $WZ$ pairs, wino masses up to 525 GeV and 250 GeV are excluded, respectively, for a bino of vanishing mass. Higgsino masses smaller than 440 GeV are excluded in a natural $R$-parity-violating model with bilinear terms. Upper limits on the production cross section of generic events beyond the Standard Model as low as 40 ab are obtained in signal regions optimised for these models and also for an $R$-parity-violating scenario with baryon-number-violating higgsino decays into top quarks and jets. The analysis significantly improves sensitivity to supersymmetric models and other processes beyond the Standard Model that may contribute to the considered final states.
Observed exclusion limits at 95% CL for the WZ-mediated simplified model of wino $\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{0}_{2}$ production from Fig 13(b) and Fig 8(aux).
positive one $\sigma$ observed exclusion limits at 95% CL for the WZ-mediated simplified model of wino $\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{0}_{2}$ production from Fig 13(b) and Fig 8(aux).
negative $\sigma$ variation of observed exclusion limits at 95% CL for the WZ-mediated simplified model of wino $\tilde{\chi}^{\pm}_{1}/\tilde{\chi}^{0}_{2}$ production from Fig 13(b) and Fig 8(aux).
This paper presents results of searches for electroweak production of supersymmetric particles in models with compressed mass spectra. The searches use 139 fb$^{-1}$ of $\sqrt{s}=13$ TeV proton-proton collision data collected by the ATLAS experiment at the Large Hadron Collider. Events with missing transverse momentum and two same-flavor, oppositely charged, low transverse momentum leptons are selected, and are further categorized by the presence of hadronic activity from initial-state radiation or a topology compatible with vector-boson fusion processes. The data are found to be consistent with predictions from the Standard Model. The results are interpreted using simplified models of $R$-parity-conserving supersymmetry in which the lightest supersymmetric partner is a neutralino with a mass similar to the lightest chargino, the second-to-lightest neutralino or the slepton. Lower limits on the masses of charginos in different simplified models range from 193 GeV to 240 GeV for moderate mass splittings, and extend down to mass splittings of 1.5 GeV to 2.4 GeV at the LEP chargino bounds (92.4 GeV). Similar lower limits on degenerate light-flavor sleptons extend up to masses of 251 GeV and down to mass splittings of 550 MeV. Constraints on vector-boson fusion production of electroweak SUSY states are also presented.
Expected 95% CL exclusion sensitivity for simplified models of direct higgsino production.
Observed 95% CL exclusion sensitivity for simplified models of direct higgsino production.
Expected 95% CL exclusion sensitivity for simplified models of direct wino-bino production, assuming $m(\tilde{\chi}_{2}^{0}) \times m(\tilde{\chi}_{1}^{0})<0$.
To assess the properties of the quark-gluon plasma formed in heavy-ion collisions, the ATLAS experiment at the LHC measures a correlation between the mean transverse momentum and the magnitudes of the flow harmonics. The analysis uses data samples of lead-lead and proton-lead collisions obtained at the centre-of-mass energy per nucleon pair of 5.02 TeV, corresponding to total integrated luminosities of $22 ~\mu b^{-1}$ and $28~nb^{-1}$, respectively. The measurement is performed using a modified Pearson correlation coefficient with the charged-particle tracks on an event-by-event basis. The modified Pearson correlation coefficients for the $2^{nd}$-, 3$^{rd}$-, and 4$^{th}$-order harmonics are measured as a function of event centrality quantified as the number of charged particles or the number of nucleons participating in the collision. The measurements are performed for several intervals of the charged-particle transverse momentum. The correlation coefficients for all studied harmonics exhibit a strong centrality evolution in the lead-lead collisions, which only weakly depends on the charged-particle momentum range. In the proton-lead collisions, the modified Pearson correlation coefficient measured for the second harmonics shows only weak centrality dependence. The data is qualitatively described by the predictions based on the hydrodynamical model.
The $cov(v_{3}^{2},[p_{T}])$ for Pb+Pb collisions for the $p_T$ 0.5-2 GeV interval as a function $N_{ch}$.
This paper reports a search for Higgs boson pair ($hh$) production in association with a vector boson ($W$ or $Z$) using 139 $fb^{-1}$ of proton-proton collision data at $\sqrt{s}=$ 13 TeV recorded with the ATLAS detector at the Large Hadron Collider. The search is performed in final states in which the vector boson decays leptonically ($W\to\ell\nu, Z\to\ell\ell,\nu\nu$ with $\ell=e, \mu$) and the Higgs bosons each decay into a pair of $b$-quarks. It targets $Vhh$ signals from both non-resonant $hh$ production, present in the Standard Model (SM), and resonant $hh$ production, as predicted in some SM extensions. A 95% confidence-level upper limit of 183 (87) times the SM cross-section is observed (expected) for non-resonant $Vhh$ production when assuming the kinematics are as expected in the SM. Constraints are also placed on Higgs boson coupling modifiers. For the resonant search, upper limits on the production cross-sections are derived for two specific models: one is the production of a vector boson along with a neutral heavy scalar resonance $H$, in the mass range 260-1000 GeV, that decays into $hh$, and the other is the production of a heavier neutral pseudoscalar resonance $A$ that decays into a $Z$ boson and $H$ boson, where the $A$ boson mass is 360-800 GeV and the $H$ boson mass is 260-400 GeV. Constraints are also derived in the parameter space of two-Higgs-doublet models.
Expected and observed 95% CL upper limits on the cross-section of resonant $H\to 4b$ production in association with a W boson. The $\pm 1 \sigma$ and $\pm 2 \sigma$ uncertainty ranges for the expected limits are shown.
Expected and observed 95% CL upper limits on the cross-section of resonant $H\to 4b$ production in association with a Z boson. The $\pm 1 \sigma$ and $\pm 2 \sigma$ uncertainty ranges for the expected limits are shown.
Data and post-fit signal and background from S+B fit for 315 GeV resonant $H\to 4b$ production in association with a W boson.
A search for the electroweak production of charginos and sleptons decaying into final states with two electrons or muons is presented. The analysis is based on 139 fb$^{-1}$ of proton-proton collisions recorded by the ATLAS detector at the Large Hadron Collider at $\sqrt{s}=13$ TeV. Three $R$-parity-conserving scenarios where the lightest neutralino is the lightest supersymmetric particle are considered: the production of chargino pairs with decays via either $W$ bosons or sleptons, and the direct production of slepton pairs. The analysis is optimised for the first of these scenarios, but the results are also interpreted in the others. No significant deviations from the Standard Model expectations are observed and limits at 95 % confidence level are set on the masses of relevant supersymmetric particles in each of the scenarios. For a massless lightest neutralino, masses up to 420 GeV are excluded for the production of the lightest-chargino pairs assuming $W$-boson-mediated decays and up to 1 TeV for slepton-mediated decays, whereas for slepton-pair production masses up to 700 GeV are excluded assuming three generations of mass-degenerate sleptons.
- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>Background Fit results:</b> <ul> <li><a href="89413?version=4&table=Background fit 1">CRs</a> <li><a href="89413?version=4&table=Background fit 2">VRs</a> <li><a href="89413?version=4&table=Background fit 5">inclusive DF-0J SRs</a> <li><a href="89413?version=4&table=Background fit 6">inclusive DF-1J SRs</a> <li><a href="89413?version=4&table=Background fit 3">inclusive SF-0J SRs</a> <li><a href="89413?version=4&table=Background fit 4">inclusive SF-1J SRs</a> </ul> <b>Kinematic distributions in VRs:</b> <ul> <li><a href="89413?version=4&table=VR kinematics 1">$m_{T2}$ in VR-top-low</a> <li><a href="89413?version=4&table=VR kinematics 2">$m_{T2}$ in VR-top-high</a> <li><a href="89413?version=4&table=VR kinematics 3">$E_T^{miss}$ in VR-WW-0J</a> <li><a href="89413?version=4&table=VR kinematics 4">$E_T^{miss}$ in VR-WW-1J</a> <li><a href="89413?version=4&table=VR kinematics 5">$E_T^{miss}$ sig in VR-VZ</a> <li><a href="89413?version=4&table=VR kinematics 6">$E_T^{miss}$ sig in VR-top-WW</a> </ul> <b>Kinematic distributions in SRs:</b> <ul> <li><a href="89413?version=4&table=SR kinematics 1">$m_{T2}$ in SR-SF-0J</a> <li><a href="89413?version=4&table=SR kinematics 2">$m_{T2}$ in SR-SF-1J</a> <li><a href="89413?version=4&table=SR kinematics 3">$m_{T2}$ in SR-DF-0J</a> <li><a href="89413?version=4&table=SR kinematics 4">$m_{T2}$ in SR-DF-1J</a> </ul> <b>Systematic uncertaities:</b> <ul> <li><a href="89413?version=4&table=Systematic uncertainties">dominant systematic uncertainties in the inclusive SRs</a> </ul> <b>Exclusion contours:</b> <ul> <li><a href="89413?version=4&table=Exclusion contour (exp) 1">expected exclusion contour direct chargino-pair production via W decay grid</a> <li><a href="89413?version=4&table=Exclusion contour (obs) 1">observed exclusion contour direct chargino-pair production via W decay grid</a> <li><a href="89413?version=4&table=Exclusion contour (exp) 2">expected exclusion contour direct chargino-pair production via slepton decay grid</a> <li><a href="89413?version=4&table=Exclusion contour (obs) 2">observed exclusion contour direct chargino-pair production via slepton decay grid</a> <li><a href="89413?version=4&table=Exclusion contour (exp) 3">expected exclusion contour direct slepton-pair production grid</a> <li><a href="89413?version=4&table=Exclusion contour (obs) 3">observed exclusion contour direct slepton-pair production grid</a> </ul> <br/><br/><b>AUXILIARY MATERIAL</b><br/> <b>Background Fit in binned SRs:</b> <ul> <li><a href="89413?version=4&table=Background fit 7">binned DF-0J SRs</a> <li><a href="89413?version=4&table=Background fit 8">binned DF-1J SRs</a> <li><a href="89413?version=4&table=Background fit 9">binned SF-0J SRs</a> <li><a href="89413?version=4&table=Background fit 10">binned SF-1J SRs</a> </ul> <b>Exclusion contours:</b> <ul> <li><a href="89413?version=4&table=Exclusion contour (exp) 4">expected exclusion contour left-handed slepton-pair production</a> <li><a href="89413?version=4&table=Exclusion contour (obs) 4">observed exclusion contour left-handed slepton-pair production</a> <li><a href="89413?version=4&table=Exclusion contour (exp) 5">expected exclusion contour right-handed slepton-pair production</a> <li><a href="89413?version=4&table=Exclusion contour (obs) 5">observed exclusion contour right-handed slepton-pair production</a> <li><a href="89413?version=4&table=Exclusion contour (exp) 6">expected exclusion contour selectron-pair production</a> <li><a href="89413?version=4&table=Exclusion contour (obs) 6">observed exclusion contour selectron-pair production</a> <li><a href="89413?version=4&table=Exclusion contour (exp) 7">expected exclusion contour left-handed selectron-pair production</a> <li><a href="89413?version=4&table=Exclusion contour (obs) 7">observed exclusion contour left-handed selectron-pair production</a> <li><a href="89413?version=4&table=Exclusion contour (exp) 8">expected exclusion contour right-handed selectron-pair production</a> <li><a href="89413?version=4&table=Exclusion contour (obs) 8">observed exclusion contour right-handed selectron-pair production</a> <li><a href="89413?version=4&table=Exclusion contour (exp) 9">expected exclusion contour smuon-pair production</a> <li><a href="89413?version=4&table=Exclusion contour (obs) 9">observed exclusion contour smuon-pair production</a> <li><a href="89413?version=4&table=Exclusion contour (exp) 10">expected exclusion contour left-handed smuon-pair production</a> <li><a href="89413?version=4&table=Exclusion contour (obs) 10">observed exclusion contour left-handed smuon-pair production</a> <li><a href="89413?version=4&table=Exclusion contour (exp) 11">expected exclusion contour right-handed smuon-pair production</a> <li><a href="89413?version=4&table=Exclusion contour (obs) 11">observed exclusion contour right-handed smuon-pair production</a> </ul> <b>Cross section upper limits:</b> <ul> <li><a href="89413?version=4&table=xsec upper limits 1">upper limits on signal cross section for direct chargino-pair production via W decay</a> <li><a href="89413?version=4&table=xsec upper limits 2">upper limits on signal cross section for direct chargino-pair production via slepton decay</a> <li><a href="89413?version=4&table=xsec upper limits 3">upper limits on signal cross section for direct slepton-pair production</a> </ul> <b>Acceptances and Efficiencies for direct chargino-pair production via W decay grid </b> <ul> <li> <b>Acceptance</b> <br/> <a href="89413?version=4&table=Acceptance SR-DF-0J-[100,inf) for C1C1WW grid">SR-DF-0J-[100,inf) </a> <a href="89413?version=4&table=Acceptance SR-DF-0J-[160,inf) for C1C1WW grid">SR-DF-0J-[160,inf) </a> <a href="89413?version=4&table=Acceptance SR-DF-0J-[100,120) for C1C1WW grid">SR-DF-0J-[100,120) </a> <a href="89413?version=4&table=Acceptance SR-DF-0J-[120,160) for C1C1WW grid">SR-DF-0J-[120,160) </a> <a href="89413?version=4&table=Acceptance SR-DF-0J-[100,105) for C1C1WW grid">SR-DF-0J-[100,105) </a> <a href="89413?version=4&table=Acceptance SR-DF-0J-[105,110) for C1C1WW grid">SR-DF-0J-[105,110) </a> <a href="89413?version=4&table=Acceptance SR-DF-0J-[110,120) for C1C1WW grid">SR-DF-0J-[110,120) </a> <a href="89413?version=4&table=Acceptance SR-DF-0J-[120,140) for C1C1WW grid">SR-DF-0J-[120,140) </a> <a href="89413?version=4&table=Acceptance SR-DF-0J-[140,160) for C1C1WW grid">SR-DF-0J-[140,160) </a> <a href="89413?version=4&table=Acceptance SR-DF-0J-[160,180) for C1C1WW grid">SR-DF-0J-[160,180) </a> <a href="89413?version=4&table=Acceptance SR-DF-0J-[180,220) for C1C1WW grid">SR-DF-0J-[180,220) </a> <a href="89413?version=4&table=Acceptance SR-DF-0J-[220,260) for C1C1WW grid">SR-DF-0J-[220,260) </a> <a href="89413?version=4&table=Acceptance SR-DF-0J-[260,inf) for C1C1WW grid">SR-DF-0J-[260,inf) </a><br/> <a href="89413?version=4&table=Acceptance SR-DF-1J-[100,inf) for C1C1WW grid">SR-DF-1J-[100,inf) </a> <a href="89413?version=4&table=Acceptance SR-DF-1J-[160,inf) for C1C1WW grid">SR-DF-1J-[160,inf) </a> <a href="89413?version=4&table=Acceptance SR-DF-1J-[100,120) for C1C1WW grid">SR-DF-1J-[100,120) </a> <a href="89413?version=4&table=Acceptance SR-DF-1J-[120,160) for C1C1WW grid">SR-DF-1J-[120,160) </a> <a href="89413?version=4&table=Acceptance SR-DF-1J-[100,105) for C1C1WW grid">SR-DF-1J-[100,105) </a> <a href="89413?version=4&table=Acceptance SR-DF-1J-[105,110) for C1C1WW grid">SR-DF-1J-[105,110) </a> <a href="89413?version=4&table=Acceptance SR-DF-1J-[110,120) for C1C1WW grid">SR-DF-1J-[110,120) </a> <a href="89413?version=4&table=Acceptance SR-DF-1J-[120,140) for C1C1WW grid">SR-DF-1J-[120,140) </a> <a href="89413?version=4&table=Acceptance SR-DF-1J-[140,160) for C1C1WW grid">SR-DF-1J-[140,160) </a> <a href="89413?version=4&table=Acceptance SR-DF-1J-[160,180) for C1C1WW grid">SR-DF-1J-[160,180) </a> <a href="89413?version=4&table=Acceptance SR-DF-1J-[180,220) for C1C1WW grid">SR-DF-1J-[180,220) </a> <a href="89413?version=4&table=Acceptance SR-DF-1J-[220,260) for C1C1WW grid">SR-DF-1J-[220,260) </a> <a href="89413?version=4&table=Acceptance SR-DF-1J-[260,inf) for C1C1WW grid">SR-DF-1J-[260,inf) </a><br/> <a href="89413?version=4&table=Acceptance SR-SF-0J-[100,inf) for C1C1WW grid">SR-SF-0J-[100,inf) </a> <a href="89413?version=4&table=Acceptance SR-SF-0J-[160,inf) for C1C1WW grid">SR-SF-0J-[160,inf) </a> <a href="89413?version=4&table=Acceptance SR-SF-0J-[100,120) for C1C1WW grid">SR-SF-0J-[100,120) </a> <a href="89413?version=4&table=Acceptance SR-SF-0J-[120,160) for C1C1WW grid">SR-SF-0J-[120,160) </a> <a href="89413?version=4&table=Acceptance SR-SF-0J-[100,105) for C1C1WW grid">SR-SF-0J-[100,105) </a> <a href="89413?version=4&table=Acceptance SR-SF-0J-[105,110) for C1C1WW grid">SR-SF-0J-[105,110) </a> <a href="89413?version=4&table=Acceptance SR-SF-0J-[110,120) for C1C1WW grid">SR-SF-0J-[110,120) </a> <a href="89413?version=4&table=Acceptance SR-SF-0J-[120,140) for C1C1WW grid">SR-SF-0J-[120,140) </a> <a href="89413?version=4&table=Acceptance SR-SF-0J-[140,160) for C1C1WW grid">SR-SF-0J-[140,160) </a> <a href="89413?version=4&table=Acceptance SR-SF-0J-[160,180) for C1C1WW grid">SR-SF-0J-[160,180) </a> <a href="89413?version=4&table=Acceptance SR-SF-0J-[180,220) for C1C1WW grid">SR-SF-0J-[180,220) </a> <a href="89413?version=4&table=Acceptance SR-SF-0J-[220,260) for C1C1WW grid">SR-SF-0J-[220,260) </a> <a href="89413?version=4&table=Acceptance SR-SF-0J-[260,inf) for C1C1WW grid">SR-SF-0J-[260,inf) </a><br/> <a href="89413?version=4&table=Acceptance SR-SF-1J-[100,inf) for C1C1WW grid">SR-SF-1J-[100,inf) </a> <a href="89413?version=4&table=Acceptance SR-SF-1J-[160,inf) for C1C1WW grid">SR-SF-1J-[160,inf) </a> <a href="89413?version=4&table=Acceptance SR-SF-1J-[100,120) for C1C1WW grid">SR-SF-1J-[100,120) </a> <a href="89413?version=4&table=Acceptance SR-SF-1J-[120,160) for C1C1WW grid">SR-SF-1J-[120,160) </a> <a href="89413?version=4&table=Acceptance SR-SF-1J-[100,105) for C1C1WW grid">SR-SF-1J-[100,105) </a> <a href="89413?version=4&table=Acceptance SR-SF-1J-[105,110) for C1C1WW grid">SR-SF-1J-[105,110) </a> <a href="89413?version=4&table=Acceptance SR-SF-1J-[110,120) for C1C1WW grid">SR-SF-1J-[110,120) </a> <a href="89413?version=4&table=Acceptance SR-SF-1J-[120,140) for C1C1WW grid">SR-SF-1J-[120,140) </a> <a href="89413?version=4&table=Acceptance SR-SF-1J-[140,160) for C1C1WW grid">SR-SF-1J-[140,160) </a> <a href="89413?version=4&table=Acceptance SR-SF-1J-[160,180) for C1C1WW grid">SR-SF-1J-[160,180) </a> <a href="89413?version=4&table=Acceptance SR-SF-1J-[180,220) for C1C1WW grid">SR-SF-1J-[180,220) </a> <a href="89413?version=4&table=Acceptance SR-SF-1J-[220,260) for C1C1WW grid">SR-SF-1J-[220,260) </a> <a href="89413?version=4&table=Acceptance SR-SF-1J-[260,inf) for C1C1WW grid">SR-SF-1J-[260,inf) </a><br/> <li> <b>Efficiency</b> <br/> <a href="89413?version=4&table=Efficiency SR-DF-0J-[100,inf) for C1C1WW grid">SR-DF-0J-[100,inf) </a> <a href="89413?version=4&table=Efficiency SR-DF-0J-[160,inf) for C1C1WW grid">SR-DF-0J-[160,inf) </a> <a href="89413?version=4&table=Efficiency SR-DF-0J-[100,120) for C1C1WW grid">SR-DF-0J-[100,120) </a> <a href="89413?version=4&table=Efficiency SR-DF-0J-[120,160) for C1C1WW grid">SR-DF-0J-[120,160) </a> <a href="89413?version=4&table=Efficiency SR-DF-0J-[100,105) for C1C1WW grid">SR-DF-0J-[100,105) </a> <a href="89413?version=4&table=Efficiency SR-DF-0J-[105,110) for C1C1WW grid">SR-DF-0J-[105,110) </a> <a href="89413?version=4&table=Efficiency SR-DF-0J-[110,120) for C1C1WW grid">SR-DF-0J-[110,120) </a> <a href="89413?version=4&table=Efficiency SR-DF-0J-[120,140) for C1C1WW grid">SR-DF-0J-[120,140) </a> <a href="89413?version=4&table=Efficiency SR-DF-0J-[140,160) for C1C1WW grid">SR-DF-0J-[140,160) </a> <a href="89413?version=4&table=Efficiency SR-DF-0J-[160,180) for C1C1WW grid">SR-DF-0J-[160,180) </a> <a href="89413?version=4&table=Efficiency SR-DF-0J-[180,220) for C1C1WW grid">SR-DF-0J-[180,220) </a> <a href="89413?version=4&table=Efficiency SR-DF-0J-[220,260) for C1C1WW grid">SR-DF-0J-[220,260) </a> <a href="89413?version=4&table=Efficiency SR-DF-0J-[260,inf) for C1C1WW grid">SR-DF-0J-[260,inf) </a><br/> <a href="89413?version=4&table=Efficiency SR-DF-1J-[100,inf) for C1C1WW grid">SR-DF-1J-[100,inf) </a> <a href="89413?version=4&table=Efficiency SR-DF-1J-[160,inf) for C1C1WW grid">SR-DF-1J-[160,inf) </a> <a href="89413?version=4&table=Efficiency SR-DF-1J-[100,120) for C1C1WW grid">SR-DF-1J-[100,120) </a> <a href="89413?version=4&table=Efficiency SR-DF-1J-[120,160) for C1C1WW grid">SR-DF-1J-[120,160) </a> <a href="89413?version=4&table=Efficiency SR-DF-1J-[100,105) for C1C1WW grid">SR-DF-1J-[100,105) </a> <a href="89413?version=4&table=Efficiency SR-DF-1J-[105,110) for C1C1WW grid">SR-DF-1J-[105,110) </a> <a href="89413?version=4&table=Efficiency SR-DF-1J-[110,120) for C1C1WW grid">SR-DF-1J-[110,120) </a> <a href="89413?version=4&table=Efficiency SR-DF-1J-[120,140) for C1C1WW grid">SR-DF-1J-[120,140) </a> <a href="89413?version=4&table=Efficiency SR-DF-1J-[140,160) for C1C1WW grid">SR-DF-1J-[140,160) </a> <a href="89413?version=4&table=Efficiency SR-DF-1J-[160,180) for C1C1WW grid">SR-DF-1J-[160,180) </a> <a href="89413?version=4&table=Efficiency SR-DF-1J-[180,220) for C1C1WW grid">SR-DF-1J-[180,220) </a> <a href="89413?version=4&table=Efficiency SR-DF-1J-[220,260) for C1C1WW grid">SR-DF-1J-[220,260) </a> <a href="89413?version=4&table=Efficiency SR-DF-1J-[260,inf) for C1C1WW grid">SR-DF-1J-[260,inf) </a><br/> <a href="89413?version=4&table=Efficiency SR-SF-0J-[100,inf) for C1C1WW grid">SR-SF-0J-[100,inf) </a> <a href="89413?version=4&table=Efficiency SR-SF-0J-[160,inf) for C1C1WW grid">SR-SF-0J-[160,inf) </a> <a href="89413?version=4&table=Efficiency SR-SF-0J-[100,120) for C1C1WW grid">SR-SF-0J-[100,120) </a> <a href="89413?version=4&table=Efficiency SR-SF-0J-[120,160) for C1C1WW grid">SR-SF-0J-[120,160) </a> <a href="89413?version=4&table=Efficiency SR-SF-0J-[100,105) for C1C1WW grid">SR-SF-0J-[100,105) </a> <a href="89413?version=4&table=Efficiency SR-SF-0J-[105,110) for C1C1WW grid">SR-SF-0J-[105,110) </a> <a href="89413?version=4&table=Efficiency SR-SF-0J-[110,120) for C1C1WW grid">SR-SF-0J-[110,120) </a> <a href="89413?version=4&table=Efficiency SR-SF-0J-[120,140) for C1C1WW grid">SR-SF-0J-[120,140) </a> <a href="89413?version=4&table=Efficiency SR-SF-0J-[140,160) for C1C1WW grid">SR-SF-0J-[140,160) </a> <a href="89413?version=4&table=Efficiency SR-SF-0J-[160,180) for C1C1WW grid">SR-SF-0J-[160,180) </a> <a href="89413?version=4&table=Efficiency SR-SF-0J-[180,220) for C1C1WW grid">SR-SF-0J-[180,220) </a> <a href="89413?version=4&table=Efficiency SR-SF-0J-[220,260) for C1C1WW grid">SR-SF-0J-[220,260) </a> <a href="89413?version=4&table=Efficiency SR-SF-0J-[260,inf) for C1C1WW grid">SR-SF-0J-[260,inf) </a><br/> <a href="89413?version=4&table=Efficiency SR-SF-1J-[100,inf) for C1C1WW grid">SR-SF-1J-[100,inf) </a> <a href="89413?version=4&table=Efficiency SR-SF-1J-[160,inf) for C1C1WW grid">SR-SF-1J-[160,inf) </a> <a href="89413?version=4&table=Efficiency SR-SF-1J-[100,120) for C1C1WW grid">SR-SF-1J-[100,120) </a> <a href="89413?version=4&table=Efficiency SR-SF-1J-[120,160) for C1C1WW grid">SR-SF-1J-[120,160) </a> <a href="89413?version=4&table=Efficiency SR-SF-1J-[100,105) for C1C1WW grid">SR-SF-1J-[100,105) </a> <a href="89413?version=4&table=Efficiency SR-SF-1J-[105,110) for C1C1WW grid">SR-SF-1J-[105,110) </a> <a href="89413?version=4&table=Efficiency SR-SF-1J-[110,120) for C1C1WW grid">SR-SF-1J-[110,120) </a> <a href="89413?version=4&table=Efficiency SR-SF-1J-[120,140) for C1C1WW grid">SR-SF-1J-[120,140) </a> <a href="89413?version=4&table=Efficiency SR-SF-1J-[140,160) for C1C1WW grid">SR-SF-1J-[140,160) </a> <a href="89413?version=4&table=Efficiency SR-SF-1J-[160,180) for C1C1WW grid">SR-SF-1J-[160,180) </a> <a href="89413?version=4&table=Efficiency SR-SF-1J-[180,220) for C1C1WW grid">SR-SF-1J-[180,220) </a> <a href="89413?version=4&table=Efficiency SR-SF-1J-[220,260) for C1C1WW grid">SR-SF-1J-[220,260) </a> <a href="89413?version=4&table=Efficiency SR-SF-1J-[260,inf) for C1C1WW grid">SR-SF-1J-[260,inf) </a><br/> </ul> <b>Cutflow:</b> <ul> <li><a href="89413?version=4&table=Cutflow 1">Cutflow for direct chargino-pair production via W decay $m(\tilde{\chi}^{\pm}_1,\tilde{\chi}^{0}_1)=(300,50) GeV$</a> <li><a href="89413?version=4&table=Cutflow 2">Cutflow for direct chargino-pair production via slepton decay $m(\tilde{\chi}^{\pm}_1,\tilde{l},\tilde{\chi}^{0}_1)=(600,300,1) GeV$</a> <li><a href="89413?version=4&table=Cutflow 3">Cutflow for direct slepton-pair production $m(\tilde{l},\tilde{\chi}^{0}_1)=(400,200) GeV$</a> </ul> <b>SimpleAnalysis framework implementation</b> of the search SRs is available under "Resources" (purple button on the left)
Observed exclusion limits on SUSY simplified models for chargino-pair production with $W$ boson mediated decays. All limits are computed at 95% CL.
Expected exclusion limits on SUSY simplified models for chargino-pair production with $W$ boson mediated decays. All limits are computed at 95% CL.