Date

Neutron - proton elastic scattering spin - spin correlation parameter. Measurements between 500 and 800 - MeV. 3. Mixtures of C(ss), C(ls), C(ll), and C(nn).

Carlson, V. ; Garnett, R. ; Hill, D. ; et al.
Phys.Rev.D 53 (1996) 3506-3533, 1996.
Inspire Record 404963 DOI 10.17182/hepdata.50927

Measurements are presented for several mixtures of the spin observables CSS,CSL=CLS, CLL, and CNN for neutron-proton elastic scattering. These data were obtained with a free polarized neutron beam, a polarized proton target, and a large magnetic spectrometer for the outgoing proton. The neutron beam kinetic energies were 484, 567, 634, 720, and 788 MeV. Combining these results with earlier measurements allows the determination of the pure spin observables CSS, CLS, and CLL at 484, 634, and 788 MeV for c.m. angles 25°≤θc.m.≤180° and at 720 MeV for 35°≤θc.m.≤80°. These data make a significant contribution to the knowledge of the isospin-0 nucleon-nucleon scattering amplitudes. © 1996 The American Physical Society.

19 data tables match query

Results for the pure spin observables. Statistical errors only. (Data for CSS and CNN at (172.5 to 177.5) and (167.5 to 172.5) degrees are uncertain because of the rapid angular dependence and possible errors in angle, and may be omitted from phase shift analyses.) The CNN data without errors are from a phase shift analysis of Arndt et al. (PR D45 (1992) 3395) [FA92] and were used to derive pure spin observables from the measured data.

Results for the pure spin observables. Statistical errors only. (Data for CSS and CNN at (172.5 to 177.5) and (167.5 to 172.5) degrees are uncertain because of the rapid angular dependence and possible errors in angle, and may be omitted from phase shift analyses.) The CNN data without errors are from a phase shift analysis of Arndt et al. (PR D45 (1992) 3395) [FA92] and were used to derive pure spin observables from the measured data.

Results for the pure spin observables. Statistical errors only. The CNN data without errors are from a phase shift analysis of Arndt et al. (PR D45 (1992) 3395) [FA92] and were used to derive pure spin observables from the measured data.

More…

Neutron - proton elastic scattering spin spin correlation parameter measurements between 500-MeV and 800-MeV. 2. C(SS) and C(LS) at forward cm angles

Shima, T. ; Hill, D. ; Johnson, K.F. ; et al.
Phys.Rev.D 47 (1993) 29-45, 1993.
Inspire Record 335383 DOI 10.17182/hepdata.22585

Results are presented for the spin-spin correlation parameters CSS and CLS for free np elastic scattering at neutron beam kinetic energies of 484, 634, 720, and 788 MeV and c.m. angles between 25° and 80°. The measurements were performed with a polarized neutron beam and a polarized proton target. These are the first measurements of this type to be reported in the forward angular region with a free polarized neutron beam. The observables CSS and CLS are both small at all energies, except for CLS at 788 MeV, which is larger than phase-shift analysis predictions by more than one standard deviation for most of the measured points.

8 data tables match query

No description provided.

No description provided.

No description provided.

More…

Neutron proton elastic scattering spin spin correlation parameter measurements between 500-MeV and 800-Mev: 1. C(SL) and C(LL) at backward c.m. angles

Ditzler, W.R. ; Hill, D. ; Hoftiezer, J. ; et al.
Phys.Rev.D 46 (1992) 2792-2830, 1992.
Inspire Record 334079 DOI 10.17182/hepdata.22741

Final results are presented for the spin-spin correlation parameters CSL and CLL for np elastic scattering with a polarized neutron beam incident on a polarized proton target. The beam kinetic energies are 484, 634, and 788 MeV, and the c.m. angular range is 80°-180°. These data will contribute significantly to the determination of the isospin-0 amplitudes in the energy range from 500 to 800 MeV.

6 data tables match query

Pure np elastic scattering spin variables. CLL and CSL derived from measured combined spin variable. Thus the errors on CLL and CSL are slightly correlated. There are also additional systematic errors of 7 pct associated with beam and 3.3 pct target polarizations respectively.

Pure np elastic scattering spin variables. CLL and CSL derived from measured combined spin variable. Thus the errors on CLL and CSL are slightly correlated. There are also additional systematic errors of 7 pct associated with beam and 3.3 pct target polarizations respectively.

Pure np elastic scattering spin variables. CLL and CSL derived from measured combined spin variable. Thus the errors on CLL and CSL are slightly correlated. There are also additional systematic errors of 7 pct associated with beam and 3.3 pct target polarizations respectively.

More…

Measurement of the longitudinal spin dependent neutron - proton total cross-section difference Delta sigma-L (n p) between 500-MeV - 800-MeV

Beddo, M. ; Burleson, G. ; Faucett, J.A. ; et al.
Phys.Rev.D 50 (1994) 104-123, 1994.
Inspire Record 37179 DOI 10.17182/hepdata.22460

A measurement of ΔσL(np), the difference between neutron-proton total cross sections for pure longitudinal spin states, is described. Data were taken at LAMPF for five neutron beam kinetic energies: 484, 568, 634, 720, and 788 MeV. The statistical errors are in the range of 0.64–1.35 mb. Various sources of systematic effects were investigated and are described. Overall systematic errors are estimated to be on the order of 0.5 mb and include an estimate for the uncertainty in the neutron beam polarization. The ΔσL results are consistent with previous results from PSI and Saclay. These data, when combined with other results and fitted to a Breit-Wigner curve, are consistent with an elastic I=0 resonance with mass 2214±15 (stat) ±6 (syst) MeV and width 75±21±12 MeV. Because of a lack of ΔσT(np) data between 500 and 800 MeV, it is not possible to differentiate between a singlet or coupled-triplet partial wave being responsible.

2 data tables match query

No description provided.

The (I=0) part of SIG(NAME=CLL) after subtraction of the p p data, (I=1) part.


Measurement of a Mixed Spin Spin Correlation Parameter for $n p$ Elastic Scattering

Garnett, R. ; Rawool, M. ; Carlson, V. ; et al.
Phys.Rev.D 40 (1989) 1708, 1989.
Inspire Record 25430 DOI 10.17182/hepdata.23054

The mixed spin-spin correlation parameter Cσσ≈0.5CSS−0.8CSL for np elastic scattering was measured for incident-neutron-beam kinetic energies of 484, 634, and 788 MeV over the center-of-mass angular range 75°-180°. These Cσσ data are important for determining the I=0 nucleon-nucleon amplitudes and provide strong constraints on the phase-shift solutions. It was found that the P11, S13, and D13 isospin-0 partial waves are most strongly affected.

3 data tables match query

Mixed spin parameter POL.POL(NAME=CXX) is given by 0.475 * CSS + 0.088 CNN + 0.1390 CLL - 0.744 CSL.

Mixed spin parameter POL.POL(NAME=CXX) is given by 0.506 * CSS + 0.064 CNN + 0.163 CLL - 0.809 CSL.

Mixed spin parameter POL.POL(NAME=CXX) is given by 0.528 * CSS + 0.050 CNN + 0.178 CLL - 0.824 CSL.


Measurement of C(ll) and C(sl) in $N P$ Elastic Scattering at 484-{MeV} and 634-{MeV}

Burleson, G.R. ; Faucett, J.A. ; Fontenla, C.A. ; et al.
Phys.Rev.Lett. 59 (1987) 1645, 1987.
Inspire Record 21907 DOI 10.17182/hepdata.3247

The spin-spin correlation parameters CLL=(L,L;0,0)=ALL and CSL=(S,L;0,0)=ASL for np elastic scattering were measured for incident polarized-neutron–beam kinetic energies of 484 and 634 MeV over the center-of-mass angles from ≃80° to 180°. The data are important for determining the I=0 nucleon-nucleon amplitudes. These results are compared with phase-shift calculations.

5 data tables match query

No description provided.

No description provided.

No description provided.

More…

Measurements of Delta sigma-L (n p) between 500-MeV and 800-MeV

Beddo, M. ; Burleson, G. ; Faucett, J.A. ; et al.
Phys.Lett.B 258 (1991) 24-28, 1991.
Inspire Record 29058 DOI 10.17182/hepdata.51096

A measurement of Δσ L (np), the difference between neutron-proton total cross sections in pure longitudinal spin states, is described. Data were taken for five energies between 500 and 800 MeV, with statistical errors of ≈ 1.5 mb and an estimated normalization error of 6%. The data, combined with other results, show some evidence for an elastic I =0 spin-singlet resonance with mass ∼ 2213 MeV and width ∼ 74 MeV, or a coupled-triplet resonance with similar mass and width.

1 data table match query

SIG(C=PARALLEL)-SIG(C=ANTIPARALLEL) means the difference in the total crosssection with initial parallel and antiparallel longitudinal spin states. The I0 means I=0, these values were found using interpolated Delta(sigma(pp)) data.


Spin Correlation Parameter A(nn) ($\theta^*$) for $n p$ Elastic Scattering at 790-{MeV}

Nath, S. ; Glass, G. ; Hiebert, J.C. ; et al.
Phys.Rev.D 39 (1989) 3520, 1989.
Inspire Record 25429 DOI 10.17182/hepdata.23226

The spin-correlation parameter Ann for free n-p elastic scattering has been measured for the first time for incident-neutron-beam energy En=790 MeV and c.m. angles 48°≤θ*≤149°. The data are compared with the widely differing predictions of several phase-shift analyses, clearly favoring one of them. They also are compared with recently published quasifree Ann data for the more limited c.m. angular region 98°≲θ*≲122°.

1 data table match query

No description provided.


Spin observables in neutron proton elastic scattering.

Ahmidouch, A. ; Arnold, J. ; van den Brandt, B. ; et al.
Eur.Phys.J.C 2 (1998) 627-641, 1998.
Inspire Record 471273 DOI 10.17182/hepdata.11376

The analyzing power,$A_{oono}$, and the polarization transfer observables$K_{onno}$,$K_{os''so}$

20 data tables match query

Position 'A' (see text for explanation).

Position 'A' (see text for explanation).

Position 'A' (see text for explanation).

More…

QCD analyses and determinations of alpha(s) in e+ e- annihilation at energies between 35-GeV and 189-GeV.

The JADE & OPAL collaborations Pfeifenschneider, P. ; Biebel, O. ; Movilla Fernandez, P.A. ; et al.
Eur.Phys.J.C 17 (2000) 19-51, 2000.
Inspire Record 513337 DOI 10.17182/hepdata.12882

We employ data taken by the JADE and OPAL experiments for an integrated QCD study in hadronic e+e- annihilations at c.m.s. energies ranging from 35 GeV through 189 GeV. The study is based on jet-multiplicity related observables. The observables are obtained to high jet resolution scales with the JADE, Durham, Cambridge and cone jet finders, and compared with the predictions of various QCD and Monte Carlo models. The strong coupling strength, alpha_s, is determined at each energy by fits of O(alpha_s^2) calculations, as well as matched O(alpha_s^2) and NLLA predictions, to the data. Matching schemes are compared, and the dependence of the results on the choice of the renormalization scale is investigated. The combination of the results using matched predictions gives alpha_s(MZ)=0.1187+{0.0034}-{0.0019}. The strong coupling is also obtained, at lower precision, from O(alpha_s^2) fits of the c.m.s. energy evolution of some of the observables. A qualitative comparison is made between the data and a recent MLLA prediction for mean jet multiplicities.

80 data tables match query

Overall result for ALPHAS at the Z0 mass from the combination of the ln R-matching results from the observables evolved using a three-loop running expression. The errors shown are total errors and contain all the statistics and systematics.

Weighted mean for ALPHAS at the Z0 mass determined from the energy evolutions of the mean values of the 2-jet cross sections obtained with the JADE and DURHAMschemes and the 3-jet fraction for the JADE, DURHAM and CAMBRIDGE schemes evaluted at a fixed YCUT.. The errors shown are total errors and contain all the statistics and systematics.

Combined results for ALPHA_S from fits of matched predicitions. The first systematic (DSYS) error is the experimental systematic, the second DSYS error isthe hadronization systematic and the third is the QCD scale error. The values of ALPHAS evolved to the Z0 mass using a three-loop evolution are also given.

More…