In a special run of the LHC with $\beta^\star = 2.5~$km, proton-proton elastic-scattering events were recorded at $\sqrt{s} = 13~$TeV with an integrated luminosity of $340~\mu \textrm{b}^{-1}$ using the ALFA subdetector of ATLAS in 2016. The elastic cross section was measured differentially in the Mandelstam $t$ variable in the range from $-t = 2.5 \cdot 10^{-4}~$GeV$^{2}$ to $-t = 0.46~$GeV$^{2}$ using 6.9 million elastic-scattering candidates. This paper presents measurements of the total cross section $\sigma_{\textrm{tot}}$, parameters of the nuclear slope, and the $\rho$-parameter defined as the ratio of the real part to the imaginary part of the elastic-scattering amplitude in the limit $t \rightarrow 0$. These parameters are determined from a fit to the differential elastic cross section using the optical theorem and different parameterizations of the $t$-dependence. The results for $\sigma_{\textrm{tot}}$ and $\rho$ are \begin{equation*} \sigma_{\textrm{tot}}(pp\rightarrow X) = \mbox{104.7} \pm 1.1 \; \mbox{mb} , \; \; \; \rho = \mbox{0.098} \pm 0.011 . \end{equation*} The uncertainty in $\sigma_{\textrm{tot}}$ is dominated by the luminosity measurement, and in $\rho$ by imperfect knowledge of the detector alignment and by modelling of the nuclear amplitude.
The measured total cross section. The systematic uncertainty includes experimental and theoretical uncerainties.
The rho-parameter, i.e. the ratio of the real to imaginary part of the elastic scattering amplitude extrapolated to t=0. The systematic uncertainty includes experimental and theoretical uncerainties.
The nuclear slope parameter B from a fit of the form exp(-Bt-Ct^2-Dt^3). The systematic uncertainty includes experimental and theoretical uncerainties.
None
No description provided.
A measurement of the total $pp$ cross section at the LHC at $\sqrt{s}=8$ TeV is presented. An integrated luminosity of $500$ $\mu$b$^{-1}$ was accumulated in a special run with high-$\beta^{\star}$ beam optics to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable $t$. The measurement is performed with the ALFA sub-detector of ATLAS. Using a fit to the differential elastic cross section in the $-t$ range from $0.014$ GeV$^2$ to $0.1$ GeV$^2$ to extrapolate $t\rightarrow 0$, the total cross section, $\sigma_{\mathrm{tot}}(pp\rightarrow X)$, is measured via the optical theorem to be: $\sigma_{\mathrm{tot}}(pp\rightarrow X) = {96.07} \; \pm 0.18 \; ({{stat.}}) \pm 0.85 \; ({{exp.}}) \pm 0.31 \; ({extr.}) \; {mb} \;,$ where the first error is statistical, the second accounts for all experimental systematic uncertainties and the last is related to uncertainties in the extrapolation $t\rightarrow 0$. In addition, the slope of the exponential function describing the elastic cross section at small $t$ is determined to be $B = 19.74 \pm 0.05 \; ({{stat.}}) \pm 0.23 \; ({{syst.}}) \; {GeV}^{-2}$.
The measured total cross section, the first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.
The nuclear slope of the differential eslastic cross section at small |t|, the first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.
The total elastic cross section and the observed elastic cross section within the fiducial volume.
None
'1'.
None
No description provided.
None
RE/IM MEASUREMENTS TAKEN FROM TABLE 1 OF KIRILLOVA 65.
TABLE 1 (REF. 1 ).
RE/IM MEASUREMENTS TAKEN FROM TABLE 1 OF KIRILLOVA 65.
K − p elastic scattering at 10 GeV/ c is studied on ∼3600 bubble chamber events. The elastic cross section is found to be σ el = (3.20 ± 0.14)mb and the ratio σ el σ tot = (0.142 ± 0.006) , that is below the upper limit of 0.185 suggested in a model by Van Hove. The value of the forward differential cross section is consistent with zero real part to the scattering amplitude. The slope of d σ d t is similar to that for π ± and greater than that of K + , with no evidence for shrinkage of the diffraction peak. No events of backward scattering were observed. The Regge-pole model of Phillips and Rarita gives a good fit to the data.
No description provided.
A measurement of the total $pp$ cross section at the LHC at $\sqrt{s}=7$ TeV is presented. In a special run with high-$\beta^{\star}$ beam optics, an integrated luminosity of 80 $\mu$b$^{-1}$ was accumulated in order to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable $t$. The measurement is performed with the ALFA sub-detector of ATLAS. Using a fit to the differential elastic cross section in the $|t|$ range from 0.01 GeV$^2$ to 0.1 GeV$^2$ to extrapolate to $|t|\rightarrow 0$, the total cross section, $\sigma_{\mathrm{tot}}(pp\rightarrow X)$, is measured via the optical theorem to be: $$\sigma_{\mathrm{tot}}(pp\rightarrow X) = 95.35 \; \pm 0.38 \; ({\mbox{stat.}}) \pm 1.25 \; ({\mbox{exp.}}) \pm 0.37 \; (\mbox{extr.}) \; \mbox{mb},$$ where the first error is statistical, the second accounts for all experimental systematic uncertainties and the last is related to uncertainties in the extrapolation to $|t|\rightarrow 0$. In addition, the slope of the elastic cross section at small $|t|$ is determined to be $B = 19.73 \pm 0.14 \; ({\mbox{stat.}}) \pm 0.26 \; ({\mbox{syst.}}) \; \mbox{GeV}^{-2}$.
The measured total cross section, the first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.
The nuclear slope of the differential eslastic cross section at small |t|, the first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.
The Optical Point dsigma/(elastic)/dt(t-->0), the total elastic cross section and the observed elastic cross section within the fiducial volume. The first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.
None
No description provided.
No description provided.
No description provided.
We present results on .~--p seattering at kinetic energies in the laboratory of 516, 616, 710, 887 and 1085MeV. The data were obtained by exposing a liquid hydrogen bubble chamber to a pion beam from the Saelay proton synchrotron Saturne. The chamber had a diameter of 20 cm and a depth of 10 cm. There was no magnetic field. Two cameras, 15 em apart, were situated at 84 cm from the center- of the chamber. A triple quadrnpole lens looking at an internal target, and a bending magnet, defined the beam, whose momentum spread was less than 2%. The value of the momentum was measured by the wire-orbit method and by time of flight technique, and the computed momentum spread was checked by means of a Cerenkov counter. The pictures were scanned twice for all pion interactions. 0nly those events with primaries at most 3 ~ off from the mean beam direction and with vertices inside a well defined fiducial volume, were considered. All not obviously inelastic events were measured and computed by means of a Mercury Ferranti computer. The elasticity of the event was established by eoplanarity and angular correlation of the outgoing tracks. We checked that no bias was introduced for elastic events with dip angles for the scattering plane of less than 80 ~ and with cosines of the scattering angles in the C.M.S. of less than 0.95. Figs. 1 to 5 show the angular distributions for elastic scattering, for all events with dip angles for the scattering plane less than 80 ~ . The solid curves represent a best fit to the differential cross section. The ratio of charged inelastic to elastic events, was obtained by comparing the number of inelastic scatterings to the areas under the solid curves which give the number of elastic seatterings.
No description provided.
No description provided.
No description provided.